Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2014

01.01.2014

Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties

verfasst von: S. Kundu, S. Sam, B. Mishra, S. Chatterjee

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The interface microstructure and strength properties of solid state diffusion bonding of microduplex stainless steel (MDSS) to Ti alloy (TiA) with and without a Ni alloy (NiA) intermediate material were investigated at 1173 K (900 °C) for 0.9 to 5.4 ks in steps of 0.9 ks in vacuum. The effects of bonding time on the microstructure of the bonded joint have been analyzed by light optical microscopy and scanning electron microscopy in the backscattered mode. In the direct bonded joints of MDSS and TiA, the layer-wise σ phase and the λ + FeTi phase mixture were observed at the bond interface when the joint was processed for 2.7 ks and above holding times. However, when NiA was used as an intermediate material, the results indicated that TiNi3, TiNi, and Ti2Ni are formed at the NiA-TiA interface, and the irregular shaped particles of Fe22Mo20Ni45Ti13 have been observed within the TiNiintermetallic layer. The stainless steel-NiA interface is free from intermetallics and the layer of austenitic phase was observed at the stainless steel side. A maximum tensile strength of ~520 MPa, shear strength of ~405 MPa, and impact toughness of ~18 J were obtained for the directly bonded joint when processed for 2.7 ks. However, when nickel base alloy was used as an intermediate material in the same materials, the bond tensile and shear strengths increase to ~640 and ~479 MPa, respectively, and the impact toughness to ~21 J when bonding was processed for 4.5 ks. Fracture surface observations in scanning electron microscopy using energy dispersive spectroscopy demonstrate that in MDSS-TiA joints, failure takes place through the FeTi + λ phase when bonding was processed for 2.7 ks; however, failure takes place through σ phase for the diffusion joints processed for 3.6 ks and above processing times. However, in MDSS-NiA-TiA joints, the fracture takes place through NiTi2 layer at the NiA-TiA interface for all bonding times.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Aleman, I. Gutiérrez and J.J. Urcola: Scr. Mater. 1997, Vol. 36, pp. 509–15.CrossRef B. Aleman, I. Gutiérrez and J.J. Urcola: Scr. Mater. 1997, Vol. 36, pp. 509–15.CrossRef
2.
Zurück zum Zitat U. Kamachi Mudali, B.M. Ananda Rao, K. Shanmugam, R. Natarajan and B. Raj: J. Nucl. Mater., 2003, Vol. 321, pp. 40–48.CrossRef U. Kamachi Mudali, B.M. Ananda Rao, K. Shanmugam, R. Natarajan and B. Raj: J. Nucl. Mater., 2003, Vol. 321, pp. 40–48.CrossRef
3.
Zurück zum Zitat M.S. Yeh and T.H. Chuang: Scr. Metall. Mater., 1995, Vol. 33, pp. 1277–1281.CrossRef M.S. Yeh and T.H. Chuang: Scr. Metall. Mater., 1995, Vol. 33, pp. 1277–1281.CrossRef
4.
Zurück zum Zitat N. Ozdemir, N. Orhan and M. Aksoy: J. Mater. Proc. Tech., 2003, Vol. 141, pp. 228–233.CrossRef N. Ozdemir, N. Orhan and M. Aksoy: J. Mater. Proc. Tech., 2003, Vol. 141, pp. 228–233.CrossRef
5.
Zurück zum Zitat N. Özdemir and B. Bilgin: Int. J. Adv. Manuf. Technol., 2009, Vol. 41, pp. 519–26.CrossRef N. Özdemir and B. Bilgin: Int. J. Adv. Manuf. Technol., 2009, Vol. 41, pp. 519–26.CrossRef
6.
Zurück zum Zitat Z. Zhonga, T. Hinokib, T. Nozawac, Y. Parkb and H. Kohyamab: J. Alloys. Comp., 2010, Vol. 489, pp. 45–51. Z. Zhonga, T. Hinokib, T. Nozawac, Y. Parkb and H. Kohyamab: J. Alloys. Comp., 2010, Vol. 489, pp. 45–51.
7.
Zurück zum Zitat O. Torun, A. Karabulut, B. Baksan and I. Çelikyürek: Mater. Des., 2008, Vol. 29, pp. 2043–6.CrossRef O. Torun, A. Karabulut, B. Baksan and I. Çelikyürek: Mater. Des., 2008, Vol. 29, pp. 2043–6.CrossRef
8.
9.
Zurück zum Zitat B. Kurt, N. Orhan and M. Kaya: Mater. Sci. Technol., 2009, Vol. 25, pp. 556-60.CrossRef B. Kurt, N. Orhan and M. Kaya: Mater. Sci. Technol., 2009, Vol. 25, pp. 556-60.CrossRef
10.
Zurück zum Zitat H. Kato, M. Shibata and K. Yoshikawa: Mater. Sci. Technol., 1986, Vol. 2, pp. 405-9.CrossRef H. Kato, M. Shibata and K. Yoshikawa: Mater. Sci. Technol., 1986, Vol. 2, pp. 405-9.CrossRef
11.
Zurück zum Zitat M. Eroglu, T.I. Khan and N. Orhan: Mater. Sci. Technol., 2002, Vol. 18, pp. 68-72.CrossRef M. Eroglu, T.I. Khan and N. Orhan: Mater. Sci. Technol., 2002, Vol. 18, pp. 68-72.CrossRef
12.
Zurück zum Zitat J. G. Lee, S.J. Hong, M.K. Lee and C.K. Rhee: J. Nucl. Mater. 2009, Vol. 395, pp. 145–149.CrossRef J. G. Lee, S.J. Hong, M.K. Lee and C.K. Rhee: J. Nucl. Mater. 2009, Vol. 395, pp. 145–149.CrossRef
13.
Zurück zum Zitat R.K. Shiue, S.K. Wu, C.H. Chan and C.S. Huang: Met. Mater. Trans. A, 2006, Vol. 37, pp. 2207–2217.CrossRef R.K. Shiue, S.K. Wu, C.H. Chan and C.S. Huang: Met. Mater. Trans. A, 2006, Vol. 37, pp. 2207–2217.CrossRef
14.
Zurück zum Zitat A.S. Ramos, M.T. Vieira, J. Morgiel, J. Grzonka, S. Simões and M.F. Vieira: J. Alloys Comp., 2009, Vol. 484, pp. 335–340.CrossRef A.S. Ramos, M.T. Vieira, J. Morgiel, J. Grzonka, S. Simões and M.F. Vieira: J. Alloys Comp., 2009, Vol. 484, pp. 335–340.CrossRef
15.
Zurück zum Zitat R.K. Shiue, S.K. Wu and J.Y. Shiue: Mater. Sci. Eng. A, 2008, Vol. 488, pp. 186–194.CrossRef R.K. Shiue, S.K. Wu and J.Y. Shiue: Mater. Sci. Eng. A, 2008, Vol. 488, pp. 186–194.CrossRef
16.
Zurück zum Zitat P. He, JH.. Zhang, R. Zhou and X. Li: Mater. Charact. 1999, Vol. 43, pp. 287-92.CrossRef P. He, JH.. Zhang, R. Zhou and X. Li: Mater. Charact. 1999, Vol. 43, pp. 287-92.CrossRef
17.
Zurück zum Zitat P. He, J.H. Zhang, and X. Li: Mater. Sci. Technol., 2001, Vol. 17, pp. 1158-62.CrossRef P. He, J.H. Zhang, and X. Li: Mater. Sci. Technol., 2001, Vol. 17, pp. 1158-62.CrossRef
18.
Zurück zum Zitat N. Orhan, T.I. Khan and M. Eroglu: Scr. Metar., 2001, Vol. 45, pp. 441-6.CrossRef N. Orhan, T.I. Khan and M. Eroglu: Scr. Metar., 2001, Vol. 45, pp. 441-6.CrossRef
19.
Zurück zum Zitat G.B. Kale, R.V. Patil and P.S. Gawde: J. Nucl. Mater., 1998, Vol. 257, pp. 44-50.CrossRef G.B. Kale, R.V. Patil and P.S. Gawde: J. Nucl. Mater., 1998, Vol. 257, pp. 44-50.CrossRef
20.
Zurück zum Zitat S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2006, Vol. 425, pp. 107-13.CrossRef S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2006, Vol. 425, pp. 107-13.CrossRef
21.
Zurück zum Zitat X.J. Yuan, G.M. Sheng, B. Qin, W.Z. Huang and B. Zhou: Mater. Charact., 2008, Vol. 59, pp. 930–6.CrossRef X.J. Yuan, G.M. Sheng, B. Qin, W.Z. Huang and B. Zhou: Mater. Charact., 2008, Vol. 59, pp. 930–6.CrossRef
22.
Zurück zum Zitat S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2008, Vol. 480, pp. 316–22.CrossRef S. Kundu and S. Chatterjee: Mater. Sci. Eng. A, 2008, Vol. 480, pp. 316–22.CrossRef
23.
Zurück zum Zitat B. Aleman, I. Guitterrez, and J.J. Urcola: Mater. Sci. Technol., 1993, Vol. 9, pp. 633-641.CrossRef B. Aleman, I. Guitterrez, and J.J. Urcola: Mater. Sci. Technol., 1993, Vol. 9, pp. 633-641.CrossRef
24.
Zurück zum Zitat A.A.M. Elrefaey and W. Tillmann: J. Mater. Sci., 2007, Vol. 42, pp. 9553–9558.CrossRef A.A.M. Elrefaey and W. Tillmann: J. Mater. Sci., 2007, Vol. 42, pp. 9553–9558.CrossRef
25.
Zurück zum Zitat A. Changing and J. Zhangpeng: J. Less. Com. Mater., 1990, Vol. 162, pp. 315-322.CrossRef A. Changing and J. Zhangpeng: J. Less. Com. Mater., 1990, Vol. 162, pp. 315-322.CrossRef
26.
Zurück zum Zitat M.F. Islam and N. Ridley: Mater. Sci. Technol., 1996, Vol. 12, pp.623-7.CrossRef M.F. Islam and N. Ridley: Mater. Sci. Technol., 1996, Vol. 12, pp.623-7.CrossRef
27.
Zurück zum Zitat M.T. Salehi, J. Plling, N. Ridley and D.L. Hamilton: Mater. Sci. Eng. A, 1992, Vol. 150, pp. 1-6.CrossRef M.T. Salehi, J. Plling, N. Ridley and D.L. Hamilton: Mater. Sci. Eng. A, 1992, Vol. 150, pp. 1-6.CrossRef
28.
Zurück zum Zitat G.M. Sheng, J.W. Huang, B. Qin, B. Zhou and S.Y. Qiu: J. Mater. Sci., 2005, Vol. 40, pp. 6385-90.CrossRef G.M. Sheng, J.W. Huang, B. Qin, B. Zhou and S.Y. Qiu: J. Mater. Sci., 2005, Vol. 40, pp. 6385-90.CrossRef
29.
Zurück zum Zitat H. Wenbo, Z. Kaifeng and W. Guofeng: J. Mater. Proc. Technol., 2007, Vol. 183, pp. 450–4.CrossRef H. Wenbo, Z. Kaifeng and W. Guofeng: J. Mater. Proc. Technol., 2007, Vol. 183, pp. 450–4.CrossRef
30.
Zurück zum Zitat B. Bai, H. S. Yang, N. Chen and A. K. Mukherjee: Scr. Mater., 1999, Vol. 40, pp. 1079-1088.CrossRef B. Bai, H. S. Yang, N. Chen and A. K. Mukherjee: Scr. Mater., 1999, Vol. 40, pp. 1079-1088.CrossRef
31.
Zurück zum Zitat J. O. Nilsson: Mater. Sci. Technol., 1992, Vol. 8, pp. 685-699. J. O. Nilsson: Mater. Sci. Technol., 1992, Vol. 8, pp. 685-699.
32.
Zurück zum Zitat R.M. Millar, T.R. Bieler and S.L.Semiatin: Scr. Mater., 1999, Vol. 40, pp. 1387-1393.CrossRef R.M. Millar, T.R. Bieler and S.L.Semiatin: Scr. Mater., 1999, Vol. 40, pp. 1387-1393.CrossRef
33.
Zurück zum Zitat Y. Meahara, Y. Komizo and T. G. Langdon: Mater. Sci. Technol., 1998, Vol. 4, pp. 8-14. Y. Meahara, Y. Komizo and T. G. Langdon: Mater. Sci. Technol., 1998, Vol. 4, pp. 8-14.
34.
Zurück zum Zitat R. Pederson: Thesis, Lulea University of Technology. ISSN: 1402-1757. R. Pederson: Thesis, Lulea University of Technology. ISSN: 1402-1757.
35.
Zurück zum Zitat ASTM, Annual Book of ASTM Standards, Philadelphia, PA, 1997; 87–89. ASTM, Annual Book of ASTM Standards, Philadelphia, PA, 1997; 87–89.
36.
Zurück zum Zitat M.J. Tan and G.W. Chen: J. Mater. Proc. Technol., 2007, Vol. 192, pp. 434–8.CrossRef M.J. Tan and G.W. Chen: J. Mater. Proc. Technol., 2007, Vol. 192, pp. 434–8.CrossRef
37.
Zurück zum Zitat P. Villars, A. Prince and H. Okamoto: Hand book of Ternary Phase Alloys, 2nd edition, Materials Park, OH, ASM International, 1995, 8903–28. P. Villars, A. Prince and H. Okamoto: Hand book of Ternary Phase Alloys, 2nd edition, Materials Park, OH, ASM International, 1995, 8903–28.
38.
Zurück zum Zitat S Kundu, S Sam, S Chatterjee: Mater. Sci. Eng. A, 2011, Vol. 528, pp. 4910-4916.CrossRef S Kundu, S Sam, S Chatterjee: Mater. Sci. Eng. A, 2011, Vol. 528, pp. 4910-4916.CrossRef
39.
Zurück zum Zitat S. Hinotani and Y. Ohmori: Trans. Japan Inst. Mater., 1988, Vol. 29, pp. 116-24. S. Hinotani and Y. Ohmori: Trans. Japan Inst. Mater., 1988, Vol. 29, pp. 116-24.
40.
Zurück zum Zitat N. Orhan, M. Aksoy and M. Eroglu: Mater. Sci. Eng.A, 1999, Vol. 271, pp. 458-68.CrossRef N. Orhan, M. Aksoy and M. Eroglu: Mater. Sci. Eng.A, 1999, Vol. 271, pp. 458-68.CrossRef
41.
Zurück zum Zitat T.B. Massalski: Binary Alloy Phase Diagrams, 2nd edition, ASM International, Materials Park, OH: 1996, p. 1735. T.B. Massalski: Binary Alloy Phase Diagrams, 2nd edition, ASM International, Materials Park, OH: 1996, p. 1735.
42.
Zurück zum Zitat J. Laeng, Z. Xiu, X. Xu, X. Sun, H. Ru and Y Liu: Phy. Scr., 2007, Vol. T129, pp. 250-54.CrossRef J. Laeng, Z. Xiu, X. Xu, X. Sun, H. Ru and Y Liu: Phy. Scr., 2007, Vol. T129, pp. 250-54.CrossRef
43.
Zurück zum Zitat A. Laik, P.S. Gawde, K. Bhanumurthy and G.B. Kale: Met. Mater. Trans. A, 2008, Vol. 39, pp. 733–741.CrossRef A. Laik, P.S. Gawde, K. Bhanumurthy and G.B. Kale: Met. Mater. Trans. A, 2008, Vol. 39, pp. 733–741.CrossRef
44.
Zurück zum Zitat S. Kundu and S. Chatterjee: Mater. Sci. Technol., 2006, Vol. 22, pp.1201-7.CrossRef S. Kundu and S. Chatterjee: Mater. Sci. Technol., 2006, Vol. 22, pp.1201-7.CrossRef
Metadaten
Titel
Diffusion Bonding of Microduplex Stainless Steel and Ti Alloy with and without Interlayer: Interface Microstructure and Strength Properties
verfasst von
S. Kundu
S. Sam
B. Mishra
S. Chatterjee
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-1977-3

Weitere Artikel der Ausgabe 1/2014

Metallurgical and Materials Transactions A 1/2014 Zur Ausgabe

Symposium: Neutron and X-Ray Studies of Advanced Materials VI: Diffraction Centennial and Beyond

A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices

Symposium: Deformation, Damage, and Fracture of Light Metals and Alloys

Ambient Compression–Compression Fatigue Behavior of Magnesium Single Crystal

Symposium: Deformation, Damage, and Fracture of Light Metals and Alloys

In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.