Skip to main content
Erschienen in: Fluid Dynamics 4/2023

01.08.2023

Diffusion Coefficients of Electronically Excited Molecules

verfasst von: A. S. Sharipov, B. I. Loukhovitski, A. V. Pelevkin

Erschienen in: Fluid Dynamics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of electronic excitation of molecules on their diffusion coefficients is studied. Based on the electrical properties of some molecules (O2, OH, CO, N2, H2O, and HO2) in various electronic states reported elsewhere and obtained by us using quantum-chemical calculations, the binary coefficients of diffusion on the main components of atmospheric air (N2, O2, H2O, and Ar) over a wide temperature range are estimated. It is shown that the diffusion coefficients of electronically excited molecules can differ significantly from those of the specified molecules in the ground electronic state, especially for high excitation energies, and in the case of the diffusion of a polar molecule in a polar buffer gas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adamovich, I.V., Macheret, S.O., and Rich, J.W., Spatial nonhomogeneity effects in nonequilibrium vibrational kinetics, Chem. Phys., 1994, vol. 182, pp. 167–183. Adamovich, I.V., Macheret, S.O., and Rich, J.W., Spatial nonhomogeneity effects in nonequilibrium vibrational kinetics, Chem. Phys., 1994, vol. 182, pp. 167–183.
2.
Zurück zum Zitat Galkin, V.S., Makashev, N.K., and Rastigeev, E.A., Estimation of the effect of vibrational excitation of diatomic molecules on their diffusional transport and dissociation in a boundary layer, Fluid Dyn., 1996, vol. 31, pp. 144–155.ADSMATH Galkin, V.S., Makashev, N.K., and Rastigeev, E.A., Estimation of the effect of vibrational excitation of diatomic molecules on their diffusional transport and dissociation in a boundary layer, Fluid Dyn., 1996, vol. 31, pp. 144–155.ADSMATH
3.
Zurück zum Zitat Kustova, E.V. and Nagnibeda, E.A., Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium, Chem. Phys., 1998, vol. 233, pp. 57–75. Kustova, E.V. and Nagnibeda, E.A., Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium, Chem. Phys., 1998, vol. 233, pp. 57–75.
4.
Zurück zum Zitat Armenise, I., Barbato, M., Capitelli, M., and Kustova, E., State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers, J. Thermophys. Heat Transfer, 2006, vol. 20, pp. 465–476. Armenise, I., Barbato, M., Capitelli, M., and Kustova, E., State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers, J. Thermophys. Heat Transfer, 2006, vol. 20, pp. 465–476.
5.
Zurück zum Zitat Kremer, G.M., Kunova, O.V., Kustova, E.V., and Oblapenko, G.P., The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases, Phys. A, 2018, vol. 490, pp. 92–113.MathSciNetMATH Kremer, G.M., Kunova, O.V., Kustova, E.V., and Oblapenko, G.P., The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases, Phys. A, 2018, vol. 490, pp. 92–113.MathSciNetMATH
6.
Zurück zum Zitat Campbell, L. and Brunger, M.J., Modelling of plasma processes in cometary and planetary atmospheres, Plasma Sources Sci. Technol., 2013, vol. 22, p. 013002. Campbell, L. and Brunger, M.J., Modelling of plasma processes in cometary and planetary atmospheres, Plasma Sources Sci. Technol., 2013, vol. 22, p. 013002.
7.
Zurück zum Zitat Capitelli, M., Armenise, I., Bisceglie, E., Bruno, D., Celiberto, R., Colonna, G., D’Ammando, G., Pascale, O.D., Esposito, F., Gorse, C., Laporta, V., and Laricchiuta, A., Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach, Plasma Chem. Plasma Process, 2012, vol. 32, pp. 427–450. Capitelli, M., Armenise, I., Bisceglie, E., Bruno, D., Celiberto, R., Colonna, G., D’Ammando, G., Pascale, O.D., Esposito, F., Gorse, C., Laporta, V., and Laricchiuta, A., Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach, Plasma Chem. Plasma Process, 2012, vol. 32, pp. 427–450.
8.
Zurück zum Zitat Azyazov, V.N., Torbin, A.P., Pershin, A.A., Mikheyev, P.A., and Heaven, M.C., Kinetics of oxygen species in an electrically driven singlet oxygen generator, Chem. Phys., 2015, vol. 463, pp. 65–69. Azyazov, V.N., Torbin, A.P., Pershin, A.A., Mikheyev, P.A., and Heaven, M.C., Kinetics of oxygen species in an electrically driven singlet oxygen generator, Chem. Phys., 2015, vol. 463, pp. 65–69.
9.
Zurück zum Zitat Tropina, A.A., New-Tolley, M.R., and Shneider, M.N., Modeling of laser ignition in hydrogen-air mixture, AIAA SciTech 2020 Forum, 2020, p. 1892. Tropina, A.A., New-Tolley, M.R., and Shneider, M.N., Modeling of laser ignition in hydrogen-air mixture, AIAA SciTech 2020 Forum, 2020, p. 1892.
10.
Zurück zum Zitat Tropina, A.A., Uddi, M., and Ju, Y., On the effect of nonequilibrium plasma on the minimum ignition energy: part 2, IEEE T. Plasma Sci., 2011, vol. 39, pp. 3283–3287.ADS Tropina, A.A., Uddi, M., and Ju, Y., On the effect of nonequilibrium plasma on the minimum ignition energy: part 2, IEEE T. Plasma Sci., 2011, vol. 39, pp. 3283–3287.ADS
11.
Zurück zum Zitat Pineda, D.I. and Chen, J.Y., Effects of updated transport properties of singlet oxygen species on steady laminar flame simulations, Proc. Western States Section Spring Technical Meeting of the Combustion Institute, Seattle, WA, 2016, paper no. 139LF-0021. Pineda, D.I. and Chen, J.Y., Effects of updated transport properties of singlet oxygen species on steady laminar flame simulations, Proc. Western States Section Spring Technical Meeting of the Combustion Institute, Seattle, WA, 2016, paper no. 139LF-0021.
12.
Zurück zum Zitat D’Angola, A., Colonna, G., Gorse, C., and Capitelli, M., Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range, Eur. Phys. J. D, 2008, vol. 46, pp. 129–150.ADS D’Angola, A., Colonna, G., Gorse, C., and Capitelli, M., Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range, Eur. Phys. J. D, 2008, vol. 46, pp. 129–150.ADS
13.
Zurück zum Zitat Capitelli, M., Bruno, D., Colonna, G., Catalfamo, C., and Laricchiuta, A., Thermodynamics and transport properties of thermal plasmas: the role of electronic excitation, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 194005. Capitelli, M., Bruno, D., Colonna, G., Catalfamo, C., and Laricchiuta, A., Thermodynamics and transport properties of thermal plasmas: the role of electronic excitation, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 194005.
14.
Zurück zum Zitat Wang, W., Wu, Y., Rong, M., Ehn, L., and Cernusak, I., Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas, J. Phys. D: Appl. Phys., 2012, vol. 45, p. 285201. Wang, W., Wu, Y., Rong, M., Ehn, L., and Cernusak, I., Theoretical computation of thermophysical properties of high-temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas, J. Phys. D: Appl. Phys., 2012, vol. 45, p. 285201.
15.
Zurück zum Zitat Loukhovitski, B.I., Sharipov, A.S., and Starik, A.M., Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability, J. Phys. B: At. Mol. Opt. Phys., 2016, vol. 49, p. 125102. Loukhovitski, B.I., Sharipov, A.S., and Starik, A.M., Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability, J. Phys. B: At. Mol. Opt. Phys., 2016, vol. 49, p. 125102.
16.
Zurück zum Zitat Sharipov, A.S., Loukhovitski, B.I., and Starik, A.M., Influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: theoretical study, J. Phys. B: At. Mol. Opt. Phys., 2017, vol. 50, p. 165101. Sharipov, A.S., Loukhovitski, B.I., and Starik, A.M., Influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: theoretical study, J. Phys. B: At. Mol. Opt. Phys., 2017, vol. 50, p. 165101.
17.
Zurück zum Zitat Sharipov, A.S., Loukhovitski, B.I., Pelevkin, A.V., Kobtsev, V.D., and Kozlov, D.N., Polarizability of electronically excited molecular oxygen: theory and experiment, J. Phys. B: At. Mol. Opt. Phys., 2019, vol. 52, p. 045101. Sharipov, A.S., Loukhovitski, B.I., Pelevkin, A.V., Kobtsev, V.D., and Kozlov, D.N., Polarizability of electronically excited molecular oxygen: theory and experiment, J. Phys. B: At. Mol. Opt. Phys., 2019, vol. 52, p. 045101.
18.
Zurück zum Zitat Sharipov, A.S., Loukhovitski, B.I., and Starik, A.M., Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, diffusion coefficients, reactivity, J. Phys. B: At. Mol. Opt. Phys., 2016, vol. 49, p. 125103. Sharipov, A.S., Loukhovitski, B.I., and Starik, A.M., Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, diffusion coefficients, reactivity, J. Phys. B: At. Mol. Opt. Phys., 2016, vol. 49, p. 125103.
19.
Zurück zum Zitat Kunc, J.A., Central-force potentials for interaction of rotationally and vibrationally excited molecules, J. Phys. B: At. Mol. Opt. Phys., 1990, vol. 23, pp. 2553–2566.ADS Kunc, J.A., Central-force potentials for interaction of rotationally and vibrationally excited molecules, J. Phys. B: At. Mol. Opt. Phys., 1990, vol. 23, pp. 2553–2566.ADS
20.
Zurück zum Zitat Kang, S.H. and Kunc, J.A., Molecular diameters in high-temperature gases, J. Phys. Chem., 1991, vol. 95, pp. 6971–6973. Kang, S.H. and Kunc, J.A., Molecular diameters in high-temperature gases, J. Phys. Chem., 1991, vol. 95, pp. 6971–6973.
21.
Zurück zum Zitat Gorbachev, Y.E., Gordillo-Vaszquez, F.J., and Kunc, J.A., Diameters of rotationally and vibrationally excited diatomic molecules, Physica A, 1997, vol. 247, pp. 108–120. Gorbachev, Y.E., Gordillo-Vaszquez, F.J., and Kunc, J.A., Diameters of rotationally and vibrationally excited diatomic molecules, Physica A, 1997, vol. 247, pp. 108–120.
22.
Zurück zum Zitat Capitelli, M., Celiberto, R., Gorse, C., Laricchiuta, A., Minelli, P., and Pagano, D., Electronically excited states and transport properties of thermal plasmas: the reactive thermal conductivity, Phys. Rev. E, 2002, vol. 66, p. 016403. Capitelli, M., Celiberto, R., Gorse, C., Laricchiuta, A., Minelli, P., and Pagano, D., Electronically excited states and transport properties of thermal plasmas: the reactive thermal conductivity, Phys. Rev. E, 2002, vol. 66, p. 016403.
23.
Zurück zum Zitat Kustova, E.V. and Puzyreva, L.A., Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation, Phys. Rev. E, 2009, vol. 80, p. 046407. Kustova, E.V. and Puzyreva, L.A., Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation, Phys. Rev. E, 2009, vol. 80, p. 046407.
24.
Zurück zum Zitat Gordiets, B., Ferreira, C.M., Pinheiro, M.J., and Ricard, A., Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes, Plasma Sources Sci. Technol., 1998, vol. 7, pp. 363–378.ADS Gordiets, B., Ferreira, C.M., Pinheiro, M.J., and Ricard, A., Self-consistent kinetic model of low-pressure N2-H2 flowing discharges: I. Volume processes, Plasma Sources Sci. Technol., 1998, vol. 7, pp. 363–378.ADS
25.
Zurück zum Zitat Bourig, A., Thevenin, D., Martin, J.-P., Janiga, G., and Zahringer, K., Numerical modelling of H2–O2 flames involving electronically-excited species O2(a 1Δg),O(1D) and OH(2Σ+), Proc. Combust. Inst., 2009, vol. 32, pp. 3171–3179. Bourig, A., Thevenin, D., Martin, J.-P., Janiga, G., and Zahringer, K., Numerical modelling of H2–O2 flames involving electronically-excited species O2(a 1Δg),O(1D) and OH(2Σ+), Proc. Combust. Inst., 2009, vol. 32, pp. 3171–3179.
26.
Zurück zum Zitat Konnov, A.A., On the role of excited species in hydrogen combustion, Combust. Flame, 2015, vol. 162, pp. 3755–3772. Konnov, A.A., On the role of excited species in hydrogen combustion, Combust. Flame, 2015, vol. 162, pp. 3755–3772.
27.
Zurück zum Zitat Ombrello, T. and Popov, N., Mechanisms of ethylene flame propagation enhancement by O2(a 1Δg), Aerospace Lab., 2015, hal-01270947. Ombrello, T. and Popov, N., Mechanisms of ethylene flame propagation enhancement by O2(a 1Δg), Aerospace Lab., 2015, hal-01270947.
28.
Zurück zum Zitat Kozlov, V.E., Starik, A.M., and Titova, N.S., Enhancement of combustion of a hydrogen–air mixture by excitation of O2 molecules to the a 1Δg state, Combust. Expl. Shock Waves, 2008, vol. 44, pp. 371–379. Kozlov, V.E., Starik, A.M., and Titova, N.S., Enhancement of combustion of a hydrogen–air mixture by excitation of O2 molecules to the a 1Δg state, Combust. Expl. Shock Waves, 2008, vol. 44, pp. 371–379.
29.
Zurück zum Zitat Hirschfelder, J.O. and Eliason, M.A., The estimation of the transport properties for electronically excited atoms and molecules, Ann. New York Acad. Sci., 1957, vol. 67, no. 9, pp. 451–461.ADS Hirschfelder, J.O. and Eliason, M.A., The estimation of the transport properties for electronically excited atoms and molecules, Ann. New York Acad. Sci., 1957, vol. 67, no. 9, pp. 451–461.ADS
30.
Zurück zum Zitat Eletskii, A.V., Capitelli, M., Celiberto, R., and Laricchiuta, A., Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms, Phys. Rev. A, 2004, vol. 69, p. 042718. Eletskii, A.V., Capitelli, M., Celiberto, R., and Laricchiuta, A., Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms, Phys. Rev. A, 2004, vol. 69, p. 042718.
31.
Zurück zum Zitat Istomin, V.A., Kustova, E.V., and Mekhonoshina, M.A., Eucken correction in high-temperature gases with electronic excitation, J. Chem. Phys., 2014, vol. 140, p. 184311. Istomin, V.A., Kustova, E.V., and Mekhonoshina, M.A., Eucken correction in high-temperature gases with electronic excitation, J. Chem. Phys., 2014, vol. 140, p. 184311.
32.
Zurück zum Zitat Istomin, V.A. and Kustova, E.V., State-specific transport properties of partially ionized flows of electronically excited atomic gases, Chem. Phys., 2017, vol. 485, pp. 125–139. Istomin, V.A. and Kustova, E.V., State-specific transport properties of partially ionized flows of electronically excited atomic gases, Chem. Phys., 2017, vol. 485, pp. 125–139.
33.
Zurück zum Zitat Kobtsev, V.D., Kostritsa, S.A., Smirnov, V.V., Titova, N.S., and Torokhov, S.A., Flow reactor experimental study of H2/O2 and H2/air mixtures ignition assisted by the electrical discharge, Combust. Sci. Technol., 2020, vol. 192, pp. 744–759. Kobtsev, V.D., Kostritsa, S.A., Smirnov, V.V., Titova, N.S., and Torokhov, S.A., Flow reactor experimental study of H2/O2 and H2/air mixtures ignition assisted by the electrical discharge, Combust. Sci. Technol., 2020, vol. 192, pp. 744–759.
34.
Zurück zum Zitat Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954; London: Chapman and Hall, 1954. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954; London: Chapman and Hall, 1954.
35.
Zurück zum Zitat Neufeld, P.D., Janzen, A.R., and Aziz, R.A., Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential, J. Chem. Phys., 1972, vol. 57, pp. 1100−1103.ADS Neufeld, P.D., Janzen, A.R., and Aziz, R.A., Empirical equations to calculate 16 of the transport collision integrals Ω(l,s)* for the Lennard-Jones (12-6) potential, J. Chem. Phys., 1972, vol. 57, pp. 1100−1103.ADS
36.
Zurück zum Zitat Brown, N.J., Bastien, L.A., and Price, P.N., Transport properties for combustion modeling, Prog. Energy Combust. Sci., 2011, vol. 37, pp. 565–582. Brown, N.J., Bastien, L.A., and Price, P.N., Transport properties for combustion modeling, Prog. Energy Combust. Sci., 2011, vol. 37, pp. 565–582.
37.
Zurück zum Zitat Paul, P. and Warnatz, J., A re-evaluation of the means used to calculate transport properties of reacting flows, Proc. Combust. Inst., 1998, vol. 27, pp. 495–504. Paul, P. and Warnatz, J., A re-evaluation of the means used to calculate transport properties of reacting flows, Proc. Combust. Inst., 1998, vol. 27, pp. 495–504.
38.
Zurück zum Zitat Sharipov, A.S., Loukhovitski, B.I., Tsai, C.-J., and Starik, A.M., Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases, Eur. Phys. J. D, 2014, vol. 68, p. 99.ADS Sharipov, A.S., Loukhovitski, B.I., Tsai, C.-J., and Starik, A.M., Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases, Eur. Phys. J. D, 2014, vol. 68, p. 99.ADS
39.
Zurück zum Zitat Ruud, K., Mennucci, B., Cammi, R., and Frediani, L., The calculation of excited-state polarizabilities of solvated molecules, J. Comput. Methods Sci. Eng., 2004, vol. 4, pp. 381–397. Ruud, K., Mennucci, B., Cammi, R., and Frediani, L., The calculation of excited-state polarizabilities of solvated molecules, J. Comput. Methods Sci. Eng., 2004, vol. 4, pp. 381–397.
40.
Zurück zum Zitat Paleníková, J., Kraus, M., Neogrády, P., Kellö, V., and Urban, M., Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S, Mol. Phys., 2008, vol. 106, pp. 2333–2344.ADS Paleníková, J., Kraus, M., Neogrády, P., Kellö, V., and Urban, M., Theoretical study of molecular properties of low-lying electronic excited states of H2O and H2S, Mol. Phys., 2008, vol. 106, pp. 2333–2344.ADS
41.
Zurück zum Zitat Starik, A.M., Loukhovitski, B.I., Sharipov, A.S., and Titova, N.S., Physics and chemistry of the influence of excited molecules on combustion enhancement, Phil. Trans. R. Soc. A, 2015, vol. 373, p. 20140341. Starik, A.M., Loukhovitski, B.I., Sharipov, A.S., and Titova, N.S., Physics and chemistry of the influence of excited molecules on combustion enhancement, Phil. Trans. R. Soc. A, 2015, vol. 373, p. 20140341.
42.
Zurück zum Zitat Starikovskiy, A. and Aleksandrov, N., Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci., 2013, vol. 39, pp. 61–110. Starikovskiy, A. and Aleksandrov, N., Plasma-assisted ignition and combustion, Prog. Energy Combust. Sci., 2013, vol. 39, pp. 61–110.
43.
Zurück zum Zitat Eremin, A.V., Korshunova, M.R., and Mikheyeva, E.Y., Influence of flame suppressants on the level of nonequilibrium radiation during ignition of hydrogen-oxygen mixtures behind shock waves, Combust. Expl. Shock Waves, 2019, vol. 55, pp. 121–124. Eremin, A.V., Korshunova, M.R., and Mikheyeva, E.Y., Influence of flame suppressants on the level of nonequilibrium radiation during ignition of hydrogen-oxygen mixtures behind shock waves, Combust. Expl. Shock Waves, 2019, vol. 55, pp. 121–124.
44.
Zurück zum Zitat Bystrov, N., Emelianov, A., Eremin, A., Loukhovitski, B., Sharipov, A., and Yatsenko, P., Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane, Combust. Flame, 2020, vol. 218, pp. 121–133. Bystrov, N., Emelianov, A., Eremin, A., Loukhovitski, B., Sharipov, A., and Yatsenko, P., Experimental study of high temperature oxidation of dimethyl ether, n-butanol and methane, Combust. Flame, 2020, vol. 218, pp. 121–133.
45.
Zurück zum Zitat Pelevkin, A.V. and Sharipov, A.S., Interaction of CH4 with electronically excited O2: ab initio potential energy surfaces and reaction kinetics, Plasma Chem. Plasma Process, 2019, vol. 39, pp. 1533–1558. Pelevkin, A.V. and Sharipov, A.S., Interaction of CH4 with electronically excited O2: ab initio potential energy surfaces and reaction kinetics, Plasma Chem. Plasma Process, 2019, vol. 39, pp. 1533–1558.
46.
Zurück zum Zitat Granovsky, A.A., Firefly Ver. 8.2.0. http://classic.chem.msu.su/gran/firefly/index.html. Granovsky, A.A., Firefly Ver. 8.2.0. http://​classic.​chem.​msu.​su/​gran/​firefly/​index.​html.​
47.
Zurück zum Zitat Wicke, B.G. and Klemperer, W., Experimental dipole moment function and calculated radiative lifetimes for vibrational transitions in carbon monoxide a 3Π*, J. Chem. Phys., 1975, vol. 63, pp. 3756–3763.ADS Wicke, B.G. and Klemperer, W., Experimental dipole moment function and calculated radiative lifetimes for vibrational transitions in carbon monoxide a 3Π*, J. Chem. Phys., 1975, vol. 63, pp. 3756–3763.ADS
48.
Zurück zum Zitat Cambi, R., Cappelletti, D., Liuti, G., and Pirani, F., Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations, J. Chem. Phys., 1991, vol. 95, pp. 1852–1862.ADS Cambi, R., Cappelletti, D., Liuti, G., and Pirani, F., Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations, J. Chem. Phys., 1991, vol. 95, pp. 1852–1862.ADS
49.
Zurück zum Zitat Hohm, U. and Thakkar, A.J., New relationships connecting the dipole polarizability, radius, and second ionization potential for atoms, J. Phys. Chem. A, 2012, vol. 116, pp. 697–703. Hohm, U. and Thakkar, A.J., New relationships connecting the dipole polarizability, radius, and second ionization potential for atoms, J. Phys. Chem. A, 2012, vol. 116, pp. 697–703.
50.
Zurück zum Zitat Bastien, L.A.J., Price, P.N., and Brown, N.J., Intermolecular potential parameters and combining rules determined from viscosity data, Int. J. Chem. Kinet., 2010, vol. 42, pp. 713–723. Bastien, L.A.J., Price, P.N., and Brown, N.J., Intermolecular potential parameters and combining rules determined from viscosity data, Int. J. Chem. Kinet., 2010, vol. 42, pp. 713–723.
51.
Zurück zum Zitat Dymond, J.H., Hard-sphere theories of transport properties, Chem. Soc. Rev., 1985, vol. 14, pp. 317–356. Dymond, J.H., Hard-sphere theories of transport properties, Chem. Soc. Rev., 1985, vol. 14, pp. 317–356.
52.
Zurück zum Zitat Sokolova, I.A., Vasiljevskii, S.A., and Andriatis, A.V., Calculation of transport coefficients of multicomponent gas and plasma, Fiz.-Khim. Kinet. Gaz. Din. – Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract), 2005, vol. 3. http://chemphys.edu.ru/issues/2005-3/articles/80/. Sokolova, I.A., Vasiljevskii, S.A., and Andriatis, A.V., Calculation of transport coefficients of multicomponent gas and plasma, Fiz.-Khim. Kinet. Gaz. Din. – Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract), 2005, vol. 3. http://​chemphys.​edu.​ru/​issues/​2005-3/​articles/​80/​.​
53.
Zurück zum Zitat Pelevkin, A.V., Kadochnikov, I.N., and Sharipov, A.S., Theoretical study of the interaction of atomic nitrogen with electronically excited molecular oxygen, Fiz.-Khim. Kinet. Gaz. Din. – Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract), 2019, vol. 20, no. 2. http://chemphys.edu.ru/issues/2019-20-2/articles/837/. Pelevkin, A.V., Kadochnikov, I.N., and Sharipov, A.S., Theoretical study of the interaction of atomic nitrogen with electronically excited molecular oxygen, Fiz.-Khim. Kinet. Gaz. Din. – Physical-Chemical Kinetics in Gas Dynamics (in Russian, English abstract), 2019, vol. 20, no. 2. http://​chemphys.​edu.​ru/​issues/​2019-20-2/​articles/​837/​.​
54.
Zurück zum Zitat Middha, P., Yang, B., and Wang, H., A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames, Proc. Combust. Inst., 2002, vol. 29, pp. 1361–1369. Middha, P., Yang, B., and Wang, H., A first-principle calculation of the binary diffusion coefficients pertinent to kinetic modeling of hydrogen/oxygen/helium flames, Proc. Combust. Inst., 2002, vol. 29, pp. 1361–1369.
Metadaten
Titel
Diffusion Coefficients of Electronically Excited Molecules
verfasst von
A. S. Sharipov
B. I. Loukhovitski
A. V. Pelevkin
Publikationsdatum
01.08.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 4/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462823600943

Weitere Artikel der Ausgabe 4/2023

Fluid Dynamics 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.