Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 1/2024

11.07.2023 | Original Article

Dimension-divided feature smoothing for graph neural network

verfasst von: Zhensheng Wang, Hongwei Yang, Naveed Ahmad, Lina Zhao

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graph Neural Networks(GNNs) learn the node representation of multi-hops through stacking layers. However, deep GNNs often suffer from over-smoothing, which drives people to the road of model simplification. With the deepening of research, it is found that the representation of nodes is more related to feature smoothing. More and more simplified models show that the nonparametric feature smoothing scheme can not only reduce computational complexity but also improve performance. Because the features of nodes in GNNs propagate along the edges, the denoising of graph data mainly focuses on the modification of graph topology. Based on this, we propose a feature smoothing scheme on the topology modification graph named Topology-modified Feature Smoothing(TMFS). Experiments show that the smoothed features calculated by TMFS can improve the performance of GNNs. Graph data usually have high-dimension features. Some feature dimensions contribute more to node classification, while others may only be the personality features of specific nodes. However, the existing propagation schemes cause all dimensional features to propagate along the edge at the same time. Such schemes as dropedge and addedge cannot change this situation. This feature propagation method is very mechanized. To solve this problem, we divide the dimension of features according to commonality nature, and modify the graph topology respectively, to realize the Dimension-divided Feature Smoothing(DDFS) of personalized propagation. Our experiments show that the deep features obtained by DDFS can not only improve the performance of GNNs but also be more stable. Our feature smoothing scheme can be seen as a plug-and-play module. On the Cora dataset, the smoothed features of our DDFS have improved the accuracy of MLP by 27.88% and other GNNs by 2.29% at most.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International conference on machine learning (pp. 1263–1272) Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: International conference on machine learning (pp. 1263–1272)
2.
3.
Zurück zum Zitat Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:1710.10903. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:​1710.​10903.
4.
Zurück zum Zitat Liu C, Wu J, Liu W, Hu W (2021) Enhancing graph neural networks by a high-quality aggregation of beneficial information. Neural Netw 142:20–33CrossRef Liu C, Wu J, Liu W, Hu W (2021) Enhancing graph neural networks by a high-quality aggregation of beneficial information. Neural Netw 142:20–33CrossRef
5.
Zurück zum Zitat Zhang W, Yang M, Sheng Z, Li Y, Ouyang W, Tao Y, Cui B (2021) Node Dependent local smoothing for scalable graph learning. Advances in Neural Information Processing Systems 34. Zhang W, Yang M, Sheng Z, Li Y, Ouyang W, Tao Y, Cui B (2021) Node Dependent local smoothing for scalable graph learning. Advances in Neural Information Processing Systems 34.
6.
Zurück zum Zitat Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019) Simplifying graph convolutional networks. In: International conference on machine learning (pp. 6861–6871). PMLR. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K (2019) Simplifying graph convolutional networks. In: International conference on machine learning (pp. 6861–6871). PMLR.
7.
Zurück zum Zitat Zhang W, Sheng Z, Yin Z, Jiang Y, Xia Y, Gao J, Cui B (2022) Model degradation hinders deep graph neural networks. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 2493–2503). Zhang W, Sheng Z, Yin Z, Jiang Y, Xia Y, Gao J, Cui B (2022) Model degradation hinders deep graph neural networks. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 2493–2503).
8.
Zurück zum Zitat Rong Y, Huang W, Xu T, Huang J (2019) Dropedge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903. Rong Y, Huang W, Xu T, Huang J (2019) Dropedge: Towards deep graph convolutional networks on node classification. arXiv preprint arXiv:​1907.​10903.
9.
Zurück zum Zitat Chen D, Lin Y, Li W, Li P, Zhou J, Sun X (2020) Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: Proceedings of the AAAI Conference on Artificial Intelligence 34(04): 3438–3445. Chen D, Lin Y, Li W, Li P, Zhou J, Sun X (2020) Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: Proceedings of the AAAI Conference on Artificial Intelligence 34(04): 3438–3445.
10.
Zurück zum Zitat Zhao T, Liu Y, Neves L, Woodford O, Jiang M, Shah N (2020) Data augmentation for graph neural networks. arXiv preprint arXiv:2006.06830. Zhao T, Liu Y, Neves L, Woodford O, Jiang M, Shah N (2020) Data augmentation for graph neural networks. arXiv preprint arXiv:​2006.​06830.
12.
Zurück zum Zitat Cui G, Zhou J, Yang C, Liu Z (2020) Adaptive graph encoder for attributed graph embedding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 976–985). Cui G, Zhou J, Yang C, Liu Z (2020) Adaptive graph encoder for attributed graph embedding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 976–985).
13.
Zurück zum Zitat Taubin G (1995) A signal processing approach to fair surface design. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (pp. 351–358). Taubin G (1995) A signal processing approach to fair surface design. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (pp. 351–358).
14.
Zurück zum Zitat Chung FR, Graham FC (1997) Spectral graph theory (No. 92). American Mathematical Soc. Chung FR, Graham FC (1997) Spectral graph theory (No. 92). American Mathematical Soc.
15.
Zurück zum Zitat Tang YH, Zhang D, Karniadakis GE (2018) An atomistic fingerprint algorithm for learning ab initio molecular force fields. J Chem Phys 148(3):034101CrossRef Tang YH, Zhang D, Karniadakis GE (2018) An atomistic fingerprint algorithm for learning ab initio molecular force fields. J Chem Phys 148(3):034101CrossRef
16.
Zurück zum Zitat Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bringing order to the web. Stanford InfoLab. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.
17.
Zurück zum Zitat Kondor RI, Lafferty J (2002) Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th international conference on machine learning 2002: 315–322. Kondor RI, Lafferty J (2002) Diffusion kernels on graphs and other discrete structures. In: Proceedings of the 19th international conference on machine learning 2002: 315–322.
18.
Zurück zum Zitat Chung F (2007) The heat kernel as the pagerank of a graph. Proc Natl Acad Sci 104(50):19735–19740CrossRef Chung F (2007) The heat kernel as the pagerank of a graph. Proc Natl Acad Sci 104(50):19735–19740CrossRef
19.
Zurück zum Zitat Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M (2012) An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw 31:53–72CrossRef Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M (2012) An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw 31:53–72CrossRef
20.
Zurück zum Zitat Yang F, Zhang H, Tao S (2022) Hybrid deep graph convolutional networks. International Journal of Machine Learning and Cybernetics, 1–17. Yang F, Zhang H, Tao S (2022) Hybrid deep graph convolutional networks. International Journal of Machine Learning and Cybernetics, 1–17.
21.
Zurück zum Zitat Chen Y, Coskunuzer B, Gel Y (2021) Topological Relational Learning on Graphs. Advances in Neural Information Processing Systems 34. Chen Y, Coskunuzer B, Gel Y (2021) Topological Relational Learning on Graphs. Advances in Neural Information Processing Systems 34.
22.
Zurück zum Zitat Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning with graph embeddings. In: International conference on machine learning (pp 40–48). PMLR. Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning with graph embeddings. In: International conference on machine learning (pp 40–48). PMLR.
24.
Zurück zum Zitat Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lerer A (2017) Automatic differentiation in pytorch. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lerer A (2017) Automatic differentiation in pytorch.
25.
Zurück zum Zitat Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32(14–15):2627–2636CrossRef Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32(14–15):2627–2636CrossRef
26.
Zurück zum Zitat Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi KI, Jegelka S (2018) Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning (pp 5453–5462). PMLR. Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi KI, Jegelka S (2018) Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning (pp 5453–5462). PMLR.
27.
Zurück zum Zitat Rozemberczki B, Allen C, Sarkar R (2021) Multi-scale attributed node embedding. J Complex Netw 9(2): cnab014. Rozemberczki B, Allen C, Sarkar R (2021) Multi-scale attributed node embedding. J Complex Netw 9(2): cnab014.
28.
Zurück zum Zitat Alon U, Yahav E (2020) On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205. Alon U, Yahav E (2020) On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:​2006.​05205.
29.
Zurück zum Zitat Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in neural information processing systems, 30. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
30.
Zurück zum Zitat Bo D, Wang X, Shi C, Shen H (2021) Beyond low-frequency information in graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence 35(5): 3950–3957. Bo D, Wang X, Shi C, Shen H (2021) Beyond low-frequency information in graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence 35(5): 3950–3957.
31.
Zurück zum Zitat Bianchi FM, Grattarola D, Livi L, Alippi C (2021) Graph neural networks with convolutional arma filters. IEEE Trans Pattern Anal Mach Intell 44(7):3496–3507 Bianchi FM, Grattarola D, Livi L, Alippi C (2021) Graph neural networks with convolutional arma filters. IEEE Trans Pattern Anal Mach Intell 44(7):3496–3507
33.
Zurück zum Zitat Wu S, Sun F, Zhang W, Xie X, Cui B (2022) Graph neural networks in recommender systems: a survey. ACM Comput Surv 55(5):1–37CrossRef Wu S, Sun F, Zhang W, Xie X, Cui B (2022) Graph neural networks in recommender systems: a survey. ACM Comput Surv 55(5):1–37CrossRef
34.
Zurück zum Zitat Gasteiger J, Bojchevski A, Günnemann S (2018) Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997. Gasteiger J, Bojchevski A, Günnemann S (2018) Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:​1810.​05997.
35.
Zurück zum Zitat Yang Z, Zhang G, Wu J, Yang J, Sheng QZ, Peng H, Su J (2023) Minimum entropy principle guided graph neural networks. In: Proceedings of the sixteenth ACM international conference on web search and data mining (pp. 114–122). Yang Z, Zhang G, Wu J, Yang J, Sheng QZ, Peng H, Su J (2023) Minimum entropy principle guided graph neural networks. In: Proceedings of the sixteenth ACM international conference on web search and data mining (pp. 114–122).
36.
Zurück zum Zitat Spinelli I, Scardapane S, Uncini A (2020) Adaptive propagation graph convolutional network. IEEE Trans Neural Netw Learn Syst 32(10):4755–4760CrossRef Spinelli I, Scardapane S, Uncini A (2020) Adaptive propagation graph convolutional network. IEEE Trans Neural Netw Learn Syst 32(10):4755–4760CrossRef
37.
Zurück zum Zitat Liu M, Gao H, Ji S (2020. Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338–348). Liu M, Gao H, Ji S (2020. Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338–348).
38.
Zurück zum Zitat Luo G, Li J, Su J, Peng H, Yang C, Sun L, He L (2021) Graph entropy guided node embedding dimension selection for graph neural networks. arXiv preprint arXiv:2105.03178. Luo G, Li J, Su J, Peng H, Yang C, Sun L, He L (2021) Graph entropy guided node embedding dimension selection for graph neural networks. arXiv preprint arXiv:​2105.​03178.
39.
Zurück zum Zitat Althoff M, Kochdumper N (2016) CORA 2016 manual. TU Munich, 85748. Althoff M, Kochdumper N (2016) CORA 2016 manual. TU Munich, 85748.
40.
Zurück zum Zitat Zhu H, Koniusz P (2021) Simple spectral graph convolution. In International conference on learning representations. Zhu H, Koniusz P (2021) Simple spectral graph convolution. In International conference on learning representations.
41.
Zurück zum Zitat Zhu Y, Xu W, Zhang J, Liu Q, Wu S, Wang L (2021) Deep graph structure learning for robust representations: a survey. arXiv preprint arXiv:2103.03036, 14. Zhu Y, Xu W, Zhang J, Liu Q, Wu S, Wang L (2021) Deep graph structure learning for robust representations: a survey. arXiv preprint arXiv:​2103.​03036, 14.
42.
Zurück zum Zitat Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15(1):3221–3245MathSciNet Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. J Mach Learn Res 15(1):3221–3245MathSciNet
Metadaten
Titel
Dimension-divided feature smoothing for graph neural network
verfasst von
Zhensheng Wang
Hongwei Yang
Naveed Ahmad
Lina Zhao
Publikationsdatum
11.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 1/2024
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-023-01909-3

Weitere Artikel der Ausgabe 1/2024

International Journal of Machine Learning and Cybernetics 1/2024 Zur Ausgabe

Neuer Inhalt