Skip to main content
Erschienen in: Mathematical Models and Computer Simulations 2/2020

01.03.2020

Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples

verfasst von: V. A. Balashov, E. B. Savenkov, B. N. Chetverushkin

Erschienen in: Mathematical Models and Computer Simulations | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper is devoted to a description of the DiMP-Hydro software package being developed at the Keldysh Institute of Applied Mathematics (Russian Academy of Sciences). It is intended to simulate microflows of single- and two-phase viscous compressible fluids with different rheology in spatial voxel domains. Such geometric models are relevant due to the development and widespread use of computer microtomography methods. One of the main areas of the application of this software package is the simulation of microflows within pore spaces of core (rock) samples. The simulation results can be used to determine the macroscopic properties of core samples (for instance, absolute permeability) and features of displacement processes at the micro level, which is one of main tasks of digital rock technology. The used mathematical models, numerical algorithms, and the software package are described. To describe the fluid dynamics, the regularized Navier–Stokes (for single-phase flows) and Navier–Stokes–Cahn–Hillard equations (for two-phase flows) are used. The regularization is based on the quasi-hydrodynamic approach, which is physically justified and makes it possible to use explicit stable numerical algorithms that are relatively simple to implement. The software package is parallel and focused on the use of high-performance computing systems. The results of the use of DiMP-Hydro to simulate microflows of fluid (including two-phase fluid) and gas (including moderately rarefied gas) in the pore space of core samples are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland, “Pore-scale imaging and modelling,” Adv. Water Res. 51, 197–216 (2013).CrossRef M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland, “Pore-scale imaging and modelling,” Adv. Water Res. 51, 197–216 (2013).CrossRef
2.
Zurück zum Zitat M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective (Cambridge Univ. Press, Cambridge, 2017).CrossRef M. J. Blunt, Multiphase Flow in Permeable Media: A Pore-Scale Perspective (Cambridge Univ. Press, Cambridge, 2017).CrossRef
3.
Zurück zum Zitat C. F. Berg, O. Lopez, and H. Berland, “Industrial applications of digital rock technology,” J. Pet. Sci. Eng. 157, 131–147 (2017).CrossRef C. F. Berg, O. Lopez, and H. Berland, “Industrial applications of digital rock technology,” J. Pet. Sci. Eng. 157, 131–147 (2017).CrossRef
4.
Zurück zum Zitat A. Raoof, H. M. Nick, S. M. Hassanizadeh, and C. J. Spiers, “PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media,” Comput. Geosci. 61, 160–174 (2013).CrossRef A. Raoof, H. M. Nick, S. M. Hassanizadeh, and C. J. Spiers, “PoreFlow: a complex pore-network model for simulation of reactive transport in variably saturated porous media,” Comput. Geosci. 61, 160–174 (2013).CrossRef
5.
Zurück zum Zitat L. Algive, S. Bekri, and O. Vizika, “Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid,” SPE J. 15, 618–633 (2010).CrossRef L. Algive, S. Bekri, and O. Vizika, “Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid,” SPE J. 15, 618–633 (2010).CrossRef
6.
Zurück zum Zitat M. J. Blunt, “Flow in porous media and pore-network models and multiphase flow,” Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001).CrossRef M. J. Blunt, “Flow in porous media and pore-network models and multiphase flow,” Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001).CrossRef
7.
Zurück zum Zitat F. O. Alpak, F. Gray, N. Saxena, J. Dietderich, R. Hofmann, and S. Berg, “A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images,” Comput. Geosci. 22, 815–832 (2018).MathSciNetMATHCrossRef F. O. Alpak, F. Gray, N. Saxena, J. Dietderich, R. Hofmann, and S. Berg, “A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images,” Comput. Geosci. 22, 815–832 (2018).MathSciNetMATHCrossRef
8.
Zurück zum Zitat Q. Kang, P. C. Lichtner, and D. R. Janecky, “Lattice Boltzmann method for reacting flows in porous media,” Adv. Appl. Math. Mech. 2, 545–563 (2010).MathSciNetCrossRef Q. Kang, P. C. Lichtner, and D. R. Janecky, “Lattice Boltzmann method for reacting flows in porous media,” Adv. Appl. Math. Mech. 2, 545–563 (2010).MathSciNetCrossRef
9.
Zurück zum Zitat X. He and L. S. Luo, “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811–6817 (1997).CrossRef X. He and L. S. Luo, “Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811–6817 (1997).CrossRef
10.
Zurück zum Zitat W. Yong, W. Zhao, and L. Luo, “Theory of the Lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration,” Phys. Rev. E 93, 033310 (2016).MathSciNetCrossRef W. Yong, W. Zhao, and L. Luo, “Theory of the Lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration,” Phys. Rev. E 93, 033310 (2016).MathSciNetCrossRef
11.
12.
Zurück zum Zitat H. W. Zheng, C. Shu, and Y. T. Chew, “A lattice Boltzmann model for multiphase flows with large density ratio,” J. Comput. Phys. 218, 353–371 (2006).MathSciNetMATHCrossRef H. W. Zheng, C. Shu, and Y. T. Chew, “A lattice Boltzmann model for multiphase flows with large density ratio,” J. Comput. Phys. 218, 353–371 (2006).MathSciNetMATHCrossRef
13.
Zurück zum Zitat E. Aurell and M. Do-Quang, “An inventory of Lattice Boltzmann models of multiphase flows,” arXiv:cond-mat/0105372v1 [cond-mat.soft] E. Aurell and M. Do-Quang, “An inventory of Lattice Boltzmann models of multiphase flows,” arXiv:cond-mat/0105372v1 [cond-mat.soft]
14.
Zurück zum Zitat S. Succi, The Lattice Bolzmann Equation for Fluid Dynamics and Beyond (Clarendon, Oxford, 2001).MATH S. Succi, The Lattice Bolzmann Equation for Fluid Dynamics and Beyond (Clarendon, Oxford, 2001).MATH
15.
Zurück zum Zitat M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 2nd ed. (Springer, Berlin, Heidelberg, 2006), p. 172.CrossRef M. C. Sukop and D. T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 2nd ed. (Springer, Berlin, Heidelberg, 2006), p. 172.CrossRef
16.
Zurück zum Zitat X. Shan and G. Doolen, “Multicomponent Lattice-Boltzmann model with interparticle interaction,” J. Stat. Phys. 81, 379–393 (1995).MATHCrossRef X. Shan and G. Doolen, “Multicomponent Lattice-Boltzmann model with interparticle interaction,” J. Stat. Phys. 81, 379–393 (1995).MATHCrossRef
17.
Zurück zum Zitat D. M. Anderson and G. B. McFadden, A Diffuse-Inreface Description of Fluid Systems (Natl. Inst. Standards Technolol., Gaithersburg, 1996), p. 35.CrossRef D. M. Anderson and G. B. McFadden, A Diffuse-Inreface Description of Fluid Systems (Natl. Inst. Standards Technolol., Gaithersburg, 1996), p. 35.CrossRef
18.
Zurück zum Zitat D. M. Anderson, G. B. McFadden, and A. A. Wheeler, “Diffuse-interface methods in fluid mechanics,” Ann. Rev. Fluid Mech. 30, 139–165 (1998).MathSciNetMATHCrossRef D. M. Anderson, G. B. McFadden, and A. A. Wheeler, “Diffuse-interface methods in fluid mechanics,” Ann. Rev. Fluid Mech. 30, 139–165 (1998).MathSciNetMATHCrossRef
20.
Zurück zum Zitat R. Mauri, Multiphase Microfluidics: The Diffuse Interface Model, Vol. 538 of CISM Courses and Lectures (Springer, Wien, 2012), p. 176. R. Mauri, Multiphase Microfluidics: The Diffuse Interface Model, Vol. 538 of CISM Courses and Lectures (Springer, Wien, 2012), p. 176.
21.
Zurück zum Zitat S. Groß, “Numerical methods for three-dimensional incompressible two-phase flow problems,” Dissertation (RWTH Aachen, 2008). S. Groß, “Numerical methods for three-dimensional incompressible two-phase flow problems,” Dissertation (RWTH Aachen, 2008).
22.
Zurück zum Zitat S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows (Springer, Berlin, Heidelberg, 2011), p. 482.MATHCrossRef S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows (Springer, Berlin, Heidelberg, 2011), p. 482.MATHCrossRef
23.
Zurück zum Zitat A. Smolianski, “Numerical modeling of two-fluid interfacial flows,” Dissertation (Univ. of Jyväskylä, 2001). A. Smolianski, “Numerical modeling of two-fluid interfacial flows,” Dissertation (Univ. of Jyväskylä, 2001).
24.
Zurück zum Zitat C. Gunde, B. Bera, and S. K. Mitra, “Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations,” Energy 35, 5209–5216 (2010).CrossRef C. Gunde, B. Bera, and S. K. Mitra, “Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations,” Energy 35, 5209–5216 (2010).CrossRef
25.
Zurück zum Zitat Q. Zhu, Q. Zhou, and X. Li, “Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media,” J. Rock Mech. Geotech. Eng. 8, 87–92 (2016).CrossRef Q. Zhu, Q. Zhou, and X. Li, “Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media,” J. Rock Mech. Geotech. Eng. 8, 87–92 (2016).CrossRef
26.
Zurück zum Zitat A. Q. Raeini, M. J. Blunt, and B. Bijeljic, “Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method,” J. Comput. Phys. 231, 5653–5668 (2012).MathSciNetCrossRef A. Q. Raeini, M. J. Blunt, and B. Bijeljic, “Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method,” J. Comput. Phys. 231, 5653–5668 (2012).MathSciNetCrossRef
27.
Zurück zum Zitat J. Maes and C. Soulaine, “A new compressive scheme to simulate species transfer across fluid interfaces using the volume-of-fluid method,” Chem. Eng. Sci. 190, 405–418 (2018).CrossRef J. Maes and C. Soulaine, “A new compressive scheme to simulate species transfer across fluid interfaces using the volume-of-fluid method,” Chem. Eng. Sci. 190, 405–418 (2018).CrossRef
28.
Zurück zum Zitat M. Shams, A. Q. Raeini, M. J. Blunt, and B. Bijeljic, “A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method,” J. Comput. Phys. 357, 159–182 (2018).MathSciNetMATHCrossRef M. Shams, A. Q. Raeini, M. J. Blunt, and B. Bijeljic, “A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method,” J. Comput. Phys. 357, 159–182 (2018).MathSciNetMATHCrossRef
29.
Zurück zum Zitat O. Yu. Dinariev, N. V. Evseev, and A. Yu. Demianov, Introduction to the Density Functional Method in Hydrodynamics (Fizmatlit, Moscow, 2014) [in Russian]. O. Yu. Dinariev, N. V. Evseev, and A. Yu. Demianov, Introduction to the Density Functional Method in Hydrodynamics (Fizmatlit, Moscow, 2014) [in Russian].
30.
Zurück zum Zitat R. T. Armstrong, S. Berg, O. Dinariev, N. Evseev, D. Klemin, D. Koroteev, and S. Safonov, “Modeling of pore-scale two-phase phenomena using density functional hydrodynamics,” Transp. Porous Media 112, 577–607 (2016).MathSciNetCrossRef R. T. Armstrong, S. Berg, O. Dinariev, N. Evseev, D. Klemin, D. Koroteev, and S. Safonov, “Modeling of pore-scale two-phase phenomena using density functional hydrodynamics,” Transp. Porous Media 112, 577–607 (2016).MathSciNetCrossRef
31.
Zurück zum Zitat http://www.slb.com/services/characterization/reservoir/core_pvt_lab/coreflow.aspx. Accessed Sept. 26, 2018. http://www.slb.com/services/characterization/reservoir/core_pvt_lab/coreflow.aspx. Accessed Sept. 26, 2018.
32.
Zurück zum Zitat Yu. V. Sheretov, Continuous Media Dynamics with Spatiotemporal Averaging (RKhD, Izhevsk, Moscow, 2009) [in Russian]. Yu. V. Sheretov, Continuous Media Dynamics with Spatiotemporal Averaging (RKhD, Izhevsk, Moscow, 2009) [in Russian].
33.
Zurück zum Zitat B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (MAKS Press, Moscow, 2004; CIMNE, Barcelona, 2008). B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (MAKS Press, Moscow, 2004; CIMNE, Barcelona, 2008).
34.
Zurück zum Zitat T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer, Berlin, Heidelberg, 2009), p. 286. T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer, Berlin, Heidelberg, 2009), p. 286.
35.
Zurück zum Zitat V. A. Balashov and E. B. Savenkov, “Quasi-hydrodynamic model of multiphase fluid flows taking into account phase interaction,” J. Appl. Mech. Tech. Phys. 59, 434–444 (2018).MathSciNetMATHCrossRef V. A. Balashov and E. B. Savenkov, “Quasi-hydrodynamic model of multiphase fluid flows taking into account phase interaction,” J. Appl. Mech. Tech. Phys. 59, 434–444 (2018).MathSciNetMATHCrossRef
36.
Zurück zum Zitat V. A. Balashov and E. B. Savenkov, “Quasihydrodynamic equations for diffuse interface type multiphase flow model with surface effects,” KIAM Preprint No. 75 (Keldysh Inst. Appl. Math., Moscow, 2015), pp. 1–37. V. A. Balashov and E. B. Savenkov, “Quasihydrodynamic equations for diffuse interface type multiphase flow model with surface effects,” KIAM Preprint No. 75 (Keldysh Inst. Appl. Math., Moscow, 2015), pp. 1–37.
37.
Zurück zum Zitat J. Dvorkin, N. Derzhi, E. Diaz, and Q. Fang, “Relevance of computational rock physics,” Geophysics 76 (5), E141–E153 (2011).CrossRef J. Dvorkin, N. Derzhi, E. Diaz, and Q. Fang, “Relevance of computational rock physics,” Geophysics 76 (5), E141–E153 (2011).CrossRef
38.
Zurück zum Zitat Imperial College London. http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/. Accessed Sept. 26, 2018. Imperial College London. http://​www.​imperial.​ac.​uk/​earth-science/​research/​research-groups/​perm/​research/​pore-scale-modelling/​micro-ct-images-and-networks/​.​ Accessed Sept. 26, 2018.
39.
Zurück zum Zitat R. Ierusalimschy, L. Henrique de Figueiredo, and W. C. Filho, “Lua - an extensible extension language,” Software-Pract. Experience 26, 635–652 (1996). R. Ierusalimschy, L. Henrique de Figueiredo, and W. C. Filho, “Lua - an extensible extension language,” Software-Pract. Experience 26, 635–652 (1996).
40.
Zurück zum Zitat R. Ierusalimschy, Programming in Lua (Lua.Org, 2016). R. Ierusalimschy, Programming in Lua (Lua.Org, 2016).
41.
Zurück zum Zitat R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: a flexible high performance MPI,” in Proceedings of the 6th Annual International Conference on Parallel Processing and Applied Mathematics, Poznan, Poland, September2005. R. L. Graham, T. S. Woodall, and J. M. Squyres, “Open MPI: a flexible high performance MPI,” in Proceedings of the 6th Annual International Conference on Parallel Processing and Applied Mathematics, Poznan, Poland, September2005.
42.
Zurück zum Zitat V. A. Balashov and E. B. Savenkov, “Application of quasihydrodynamic equation for direct numerical simulation of flow in core samples,” KIAM Preprint No. 84 (Keldysh Inst. Appl. Math., Moscow, 2015), pp. 1–20. V. A. Balashov and E. B. Savenkov, “Application of quasihydrodynamic equation for direct numerical simulation of flow in core samples,” KIAM Preprint No. 84 (Keldysh Inst. Appl. Math., Moscow, 2015), pp. 1–20.
43.
Zurück zum Zitat V. A. Balashov and E. B. Savenkov, “Direct pore-scale ow simulation using quasi-hydrodynamic equations,” Dokl. Phys. 61, 192–194 (2016).CrossRef V. A. Balashov and E. B. Savenkov, “Direct pore-scale ow simulation using quasi-hydrodynamic equations,” Dokl. Phys. 61, 192–194 (2016).CrossRef
44.
Zurück zum Zitat V. A. Balashov and V. E. Borisov, “Numerical algorithm for 3D moderately rarefied gas flows simulation within domains with voxel geometry,” KIAM Preprint No. 99 (Keldysh Inst. Appl. Math., Moscow, 2017), pp. 1–24. V. A. Balashov and V. E. Borisov, “Numerical algorithm for 3D moderately rarefied gas flows simulation within domains with voxel geometry,” KIAM Preprint No. 99 (Keldysh Inst. Appl. Math., Moscow, 2017), pp. 1–24.
45.
Zurück zum Zitat V. A. Balashov, “Direct numerical simulation of moderately rarefied gas flow within core samples,” Mat. Model. 30 (9), 3–20 (2018).MathSciNet V. A. Balashov, “Direct numerical simulation of moderately rarefied gas flow within core samples,” Mat. Model. 30 (9), 3–20 (2018).MathSciNet
46.
Zurück zum Zitat V. Balashov, A. Zlotnik, and E. Savenkov, “Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics,” Russ. J. Numer. Anal. Math. Model. 34 (1), 1–13 (2019).MathSciNetMATHCrossRef V. Balashov, A. Zlotnik, and E. Savenkov, “Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics,” Russ. J. Numer. Anal. Math. Model. 34 (1), 1–13 (2019).MathSciNetMATHCrossRef
47.
Zurück zum Zitat V. A. Balashov and E. B. Savenkov, “Numerical simulation of two-dimensional two-phase fluid flows accounting for wettability with quasi-hydrodynamic equations,” KIAM Preprint No. 131 (Keldysh Inst. Appl. Math., Moscow, 2018), pp. 1–18. V. A. Balashov and E. B. Savenkov, “Numerical simulation of two-dimensional two-phase fluid flows accounting for wettability with quasi-hydrodynamic equations,” KIAM Preprint No. 131 (Keldysh Inst. Appl. Math., Moscow, 2018), pp. 1–18.
48.
Zurück zum Zitat V. Balashov, A. Zlotnik, and E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface,” Russ. J. Numer. Anal. Math. Model. 32, 347–358 (2017).MathSciNetMATHCrossRef V. Balashov, A. Zlotnik, and E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface,” Russ. J. Numer. Anal. Math. Model. 32, 347–358 (2017).MathSciNetMATHCrossRef
49.
Zurück zum Zitat V. A. Balashov, A. A. Zlotnik, and E. B. Savenkov, “Numerical algorithm for simulation of three-dimensional two-phase flows with surface effects within domains with voxel geometry,” KIAM Preprint No. 91 (Keldysh Inst. Appl. Math., Moscow, 2017), pp. 1–28. V. A. Balashov, A. A. Zlotnik, and E. B. Savenkov, “Numerical algorithm for simulation of three-dimensional two-phase flows with surface effects within domains with voxel geometry,” KIAM Preprint No. 91 (Keldysh Inst. Appl. Math., Moscow, 2017), pp. 1–28.
50.
Zurück zum Zitat J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28, 258–267 (1958).MATHCrossRef J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28, 258–267 (1958).MATHCrossRef
51.
Zurück zum Zitat A. Novick-Cohen and L. A. Segel, “Nonlinear aspects of the Cahn-Hilliard equation,” Phys. D (Amsterdam, Neth.) 10, 277–298 (1984). A. Novick-Cohen and L. A. Segel, “Nonlinear aspects of the Cahn-Hilliard equation,” Phys. D (Amsterdam, Neth.) 10, 277–298 (1984).
52.
Zurück zum Zitat O. Wodo and B. Ganapathysubramanian, “Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem,” J. Comput. Phys. 230, 6037–6060 (2011).MathSciNetMATHCrossRef O. Wodo and B. Ganapathysubramanian, “Computationally efficient solution to the Cahn-Hilliard equation: adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem,” J. Comput. Phys. 230, 6037–6060 (2011).MathSciNetMATHCrossRef
53.
Zurück zum Zitat M. I. M. Copetti and C. M. Elliott, “Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy,” Numer. Math. 63, 39–65 (1992).MathSciNetMATHCrossRef M. I. M. Copetti and C. M. Elliott, “Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy,” Numer. Math. 63, 39–65 (1992).MathSciNetMATHCrossRef
54.
Zurück zum Zitat G. Tierra and F. Guillén-González, “Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models,” Arch. Comput. Methods Eng. 22, 269–289 (2015).MathSciNetMATHCrossRef G. Tierra and F. Guillén-González, “Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models,” Arch. Comput. Methods Eng. 22, 269–289 (2015).MathSciNetMATHCrossRef
55.
Zurück zum Zitat J. Liu, “Thermodynamically consistent modeling and simulation of multiphase flows,” PhD Dissertation (Univ. Texas, Austin, 2014). J. Liu, “Thermodynamically consistent modeling and simulation of multiphase flows,” PhD Dissertation (Univ. Texas, Austin, 2014).
56.
Zurück zum Zitat A. Carlson, M. Do-Quang, and G. Amberg, “Modelling of dynamic wetting far from equillibrium,” Phys. Fluids 21, 121701 (2009).MATHCrossRef A. Carlson, M. Do-Quang, and G. Amberg, “Modelling of dynamic wetting far from equillibrium,” Phys. Fluids 21, 121701 (2009).MATHCrossRef
57.
Zurück zum Zitat G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput. 20, 359–392 (1998).MathSciNetMATHCrossRef G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput. 20, 359–392 (1998).MathSciNetMATHCrossRef
58.
Zurück zum Zitat W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 4th ed. (Kitware, New York, 2006). W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 4th ed. (Kitware, New York, 2006).
59.
Zurück zum Zitat H. Dong and M. J. Blunt, “Pore-network extraction from micro-computerized-tomography images,” Phys. Rev. E 80, 036307 (2009).CrossRef H. Dong and M. J. Blunt, “Pore-network extraction from micro-computerized-tomography images,” Phys. Rev. E 80, 036307 (2009).CrossRef
60.
Zurück zum Zitat W. Degruyter, A. Burgisser, O. Bachmann, and O. Malaspinas, “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices,” Geosphere 6, 470–481 (2010).CrossRef W. Degruyter, A. Burgisser, O. Bachmann, and O. Malaspinas, “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices,” Geosphere 6, 470–481 (2010).CrossRef
61.
Zurück zum Zitat Palabos: Parallel Lattice Boltzmann Solver. http://www.palabos.org/. Palabos: Parallel Lattice Boltzmann Solver. http://​www.​palabos.​org/​.​
62.
Zurück zum Zitat J. G. Heid, J. J. McMahon, R. F. Nielsen, and S. T. Yuster, “Study of the permeability of rocks to homogeneous fluids,” in Drilling and Production Practice (Am. Pet. Inst., 1950), pp. 230–244. J. G. Heid, J. J. McMahon, R. F. Nielsen, and S. T. Yuster, “Study of the permeability of rocks to homogeneous fluids,” in Drilling and Production Practice (Am. Pet. Inst., 1950), pp. 230–244.
63.
Zurück zum Zitat W. Tanikawa and T. Shimamoto, “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks,” Int. J. Rock Mech. Mining Sci. 46, 229–238 (2009).CrossRef W. Tanikawa and T. Shimamoto, “Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks,” Int. J. Rock Mech. Mining Sci. 46, 229–238 (2009).CrossRef
64.
Zurück zum Zitat F. O. Jones and W. W. Owens, “A laboratory study of low-permeability gas sands,” J. Pet. Technol. 32 (9) (1980). F. O. Jones and W. W. Owens, “A laboratory study of low-permeability gas sands,” J. Pet. Technol. 32 (9) (1980).
Metadaten
Titel
Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples
verfasst von
V. A. Balashov
E. B. Savenkov
B. N. Chetverushkin
Publikationsdatum
01.03.2020
Verlag
Pleiades Publishing
Erschienen in
Mathematical Models and Computer Simulations / Ausgabe 2/2020
Print ISSN: 2070-0482
Elektronische ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048220020027

Weitere Artikel der Ausgabe 2/2020

Mathematical Models and Computer Simulations 2/2020 Zur Ausgabe