Skip to main content

2015 | OriginalPaper | Buchkapitel

4. Direct Growth of Graphene and Graphene Nanoribbon on an Insulating Substrate by Rapid-Heating Plasma CVD

verfasst von : Toshiaki Kato, Rikizo Hatakeyama, Toshiro Kaneko

Erschienen in: Frontiers of Graphene and Carbon Nanotubes

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A transfer-free method for growing 2D graphene sheets directly on a SiO2 substrate has been realized by rapid-heating plasma chemical vapor deposition (RH-PCVD). Using this method, high-quality single-layer graphene sheets with hexagonal domain can be selectively grown between a Ni film and a SiO2 substrate. Systematic investigations reveal that the relatively thin Ni layer, rapid heating, and plasma CVD are critical to the success of this unique method of graphene growth. By applying this technique, graphene nanoribbon, 1D graphene structure, has also been directly grown on a SiO2 substrate. Precise control of the site and alignment of narrow (∼23 nm) graphene nanoribbons can be realized by directly converting a nickel nanobar into a graphene nanoribbon using rapid-heating plasma CVD. The nanoribbons grow directly between the source and drain electrodes of a field-effect transistor without any posttreatment and exhibit a clear transport gap (58.5 meV) and a high on/off ratio (>104). The process is scalable and completely compatible with existing semiconductor processes and is expected to allow the integration of graphene nanoribbons with silicon technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G (2011) Catalyst-free growth of nanographene films on various substrates. Nano Res 4:315–321CrossRef Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G (2011) Catalyst-free growth of nanographene films on various substrates. Nano Res 4:315–321CrossRef
2.
Zurück zum Zitat Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J, Zhang Y (2010) Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett 10:1542–1548CrossRef
3.
Zurück zum Zitat Su C-Y et al (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11:3612–3616CrossRef Su C-Y et al (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11:3612–3616CrossRef
4.
Zurück zum Zitat Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef Kato T, Hatakeyama R (2012) Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. ACS Nano 6:8508–8515CrossRef
5.
Zurück zum Zitat Kato T, Hatakeyama R (2012) Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat Nanotechnol 7:651–656CrossRef Kato T, Hatakeyama R (2012) Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nat Nanotechnol 7:651–656CrossRef
6.
Zurück zum Zitat Kato T, Hatakeyama R (2008) Exciton energy transfer assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. J Am Chem Soc 130:8101–8107CrossRef Kato T, Hatakeyama R (2008) Exciton energy transfer assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. J Am Chem Soc 130:8101–8107CrossRef
7.
Zurück zum Zitat Kato T, Hatakeyama R (2008) Kinetics of reactive ion etching upon single-walled carbon nanotubes. Appl Phys Lett 92:031502-1-3 Kato T, Hatakeyama R (2008) Kinetics of reactive ion etching upon single-walled carbon nanotubes. Appl Phys Lett 92:031502-1-3
8.
Zurück zum Zitat Kato T, Hatakeyama R (2010) Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4:7395–7400CrossRef Kato T, Hatakeyama R (2010) Direct growth of short single-walled carbon nanotubes with narrow-chirality distribution by time-programmed plasma chemical vapor deposition. ACS Nano 4:7395–7400CrossRef
9.
Zurück zum Zitat Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R (2010) Narrow-chirality distributed single-walled carbon nanotubes growth from nonmagnetic catalyst. J Am Chem Soc 132:9570–9572CrossRef Ghorannevis Z, Kato T, Kaneko T, Hatakeyama R (2010) Narrow-chirality distributed single-walled carbon nanotubes growth from nonmagnetic catalyst. J Am Chem Soc 132:9570–9572CrossRef
10.
Zurück zum Zitat Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H (2011) Room-temperature edge functionalization and doping of graphene by mild plasma. Small 7:574–577CrossRef Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H (2011) Room-temperature edge functionalization and doping of graphene by mild plasma. Small 7:574–577CrossRef
11.
Zurück zum Zitat Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRef Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRef
12.
Zurück zum Zitat Li XL, Wang XR, Zhang L, Lee SW, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li XL, Wang XR, Zhang L, Lee SW, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
13.
Zurück zum Zitat Jiao LY, Zhang L, Wang XR, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef Jiao LY, Zhang L, Wang XR, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880CrossRef
14.
Zurück zum Zitat Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef Kosynkin DV et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRef
15.
Zurück zum Zitat Sprinkle M et al (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727–731CrossRef Sprinkle M et al (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5:727–731CrossRef
16.
Zurück zum Zitat Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef Cai J et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef
Metadaten
Titel
Direct Growth of Graphene and Graphene Nanoribbon on an Insulating Substrate by Rapid-Heating Plasma CVD
verfasst von
Toshiaki Kato
Rikizo Hatakeyama
Toshiro Kaneko
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55372-4_4

Neuer Inhalt