Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2020

27.08.2020 | Research Paper

Discrete variable topology optimization for compliant mechanism design via Sequential Approximate Integer Programming with Trust Region (SAIP-TR)

verfasst von: Yuang Liang, Kai Sun, GengDong Cheng

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The discrete variable topology optimization method based on Sequential Approximate Integer Programming (SAIP) and Canonical relaxation algorithm demonstrates its potential to solve large-scale topology optimization problem with 0–1 optimum designs. However, currently, this discrete variable method mainly applies to the minimum compliance problem. The compliant mechanism design is another widely studied topic with distinguishing features. First, the objective function for the compliant mechanism design is non-monotonic with the material usage. Second, since de facto hinges always occur, the minimum length scale control is indispensable for manufacturability. These two issues are well studied in the SIMP approach but bring great challenges when topology optimization problems are formulated in the frame of discrete variables. The present paper generalizes this discrete variable method for the compliant mechanism design problems with minimum length scale control. Firstly, the sequential approximate integer programming with trust region (SAIP-TR) framework is proposed to directly restrict the variation of discrete design variables. Different from the continuous variable optimization, the non-linear trust region constraint can be formulated as a linear constraint under the SAIP framework. By using a merit function, two different trust region adjustment strategies that can self-adaptively adjust the precision of the sub-problems from SAIP-TR are explored. Secondly, a geometric constraint to control the minimum length scale for the material phase and void phase in the framework of discrete design variables is proposed, which suppresses de facto hinges and reduces stress concentration in optimum design. The related issue of feasibility of sub-problem is discussed. By combining the SAIP-TR framework with the geometric constraint, some different hinge-free compliant mechanism designs are successfully obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef Allaire G, Jouve F, Michailidis G (2016) Thickness control in structural optimization via a level set method. Struct Multidiscip Optim 53(6):1349–1382MathSciNetCrossRef
Zurück zum Zitat Alonso C, Querin OM, Ansola R (2013) A sequential element rejection and admission (SERA) method for compliant mechanisms design. Struct Multidiscip Optim 47(6):795–807CrossRef Alonso C, Querin OM, Ansola R (2013) A sequential element rejection and admission (SERA) method for compliant mechanisms design. Struct Multidiscip Optim 47(6):795–807CrossRef
Zurück zum Zitat Amir O, Lazarov BS (2018) Achieving stress-constrained topological design via length scale control. Struct Multidiscip Optim 58:2053–2071MathSciNetCrossRef Amir O, Lazarov BS (2018) Achieving stress-constrained topological design via length scale control. Struct Multidiscip Optim 58:2053–2071MathSciNetCrossRef
Zurück zum Zitat Ananthasuresh GK, Kota S, Gianchandani Y (1994) A methodical approach to the design of compliant micro mechanisms. Solid state sensor and actuator workshop 189–192 Ananthasuresh GK, Kota S, Gianchandani Y (1994) A methodical approach to the design of compliant micro mechanisms. Solid state sensor and actuator workshop 189–192
Zurück zum Zitat Ansola R, Vegueria E, Canales J, Tárrago J (2007) A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem Anal Des 44:53–62CrossRef Ansola R, Vegueria E, Canales J, Tárrago J (2007) A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elem Anal Des 44:53–62CrossRef
Zurück zum Zitat Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24 Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:35–654MATH Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:35–654MATH
Zurück zum Zitat Bertsekas DP (1982) Constrained optimization and Lagrange multiplier methods. Academic Press, New YorkMATH Bertsekas DP (1982) Constrained optimization and Lagrange multiplier methods. Academic Press, New YorkMATH
Zurück zum Zitat Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56:1147–1155MathSciNetCrossRef Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56:1147–1155MathSciNetCrossRef
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRef Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38MathSciNetCrossRef
Zurück zum Zitat Deepak SR, Dinesh M, Sahu DK, Ananthasuresh G (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef Deepak SR, Dinesh M, Sahu DK, Ananthasuresh G (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef
Zurück zum Zitat De Leon DM, Alexandersen J, Fonseca JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943MathSciNetCrossRef De Leon DM, Alexandersen J, Fonseca JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943MathSciNetCrossRef
Zurück zum Zitat Gao DY (2007) Solutions and optimality to box constrained nonconvex minimization problems. J Ind Manag Optim 3(2):293–304MathSciNetMATH Gao DY (2007) Solutions and optimality to box constrained nonconvex minimization problems. J Ind Manag Optim 3(2):293–304MathSciNetMATH
Zurück zum Zitat Gao DY, Ruan N (2010) Solutions to quadratic minimization problems with box and integer constraints. J Glob Optim 47:463–484MathSciNetMATHCrossRef Gao DY, Ruan N (2010) Solutions to quadratic minimization problems with box and integer constraints. J Glob Optim 47:463–484MathSciNetMATHCrossRef
Zurück zum Zitat Gao J, Song B, Mao Z (2019) A novel approach for length scale control in structural topology optimization. Eng Optim 51(10):1668–1686MathSciNetCrossRef Gao J, Song B, Mao Z (2019) A novel approach for length scale control in structural topology optimization. Eng Optim 51(10):1668–1686MathSciNetCrossRef
Zurück zum Zitat Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH
Zurück zum Zitat Guo X, Zhang W, Zhong W (2014a) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetMATHCrossRef Guo X, Zhang W, Zhong W (2014a) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Eng 272:354–378MathSciNetMATHCrossRef
Zurück zum Zitat Guo X, Zhang WS, Zhong WL (2014b) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. ASME Trans J Appl Mech 81:081009–1–081009–12 Guo X, Zhang WS, Zhong WL (2014b) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. ASME Trans J Appl Mech 81:081009–1–081009–12
Zurück zum Zitat Huang X, Xie YM (2012) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40:409–416MathSciNetMATHCrossRef Huang X, Xie YM (2012) Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct Multidiscip Optim 40:409–416MathSciNetMATHCrossRef
Zurück zum Zitat Huang X, Li Y, Zhou SW, Xie YM (2014) Topology optimization of compliant mechanisms with desired structural stiffness. Eng Struct 79:13–21CrossRef Huang X, Li Y, Zhou SW, Xie YM (2014) Topology optimization of compliant mechanisms with desired structural stiffness. Eng Struct 79:13–21CrossRef
Zurück zum Zitat Jansen M (2019) Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints. Struct Multidiscip Optim 59:1775–1788MathSciNetCrossRef Jansen M (2019) Explicit level set and density methods for topology optimization with equivalent minimum length scale constraints. Struct Multidiscip Optim 59:1775–1788MathSciNetCrossRef
Zurück zum Zitat Kim JE, Kim YY, Min S (2005) A note on hinge-free topology design using the special triangulation of design elements. Commun Numer Meth En 21(12):701–710 Kim JE, Kim YY, Min S (2005) A note on hinge-free topology design using the special triangulation of design elements. Commun Numer Meth En 21(12):701–710
Zurück zum Zitat Kim CJ, Kota S, Moon YM (2006) An instant center approach toward the conceptual design of compliant mechanisms. J Mech Des 128(3):542–550CrossRef Kim CJ, Kota S, Moon YM (2006) An instant center approach toward the conceptual design of compliant mechanisms. J Mech Des 128(3):542–550CrossRef
Zurück zum Zitat Lau GK, Du H, Lim MK (2001) Convex analysis for topology optimization f compliant mechanisms. Struct Multidiscip Optim 22:284–294CrossRef Lau GK, Du H, Lim MK (2001) Convex analysis for topology optimization f compliant mechanisms. Struct Multidiscip Optim 22:284–294CrossRef
Zurück zum Zitat Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef
Zurück zum Zitat Li Y, Huang X, Xie Y, Zhou S (2014) Evolutionary topology optimization of hinge-free compliant mechanisms. Int J Mech Sci 86:69–75 Li Y, Huang X, Xie Y, Zhou S (2014) Evolutionary topology optimization of hinge-free compliant mechanisms. Int J Mech Sci 86:69–75
Zurück zum Zitat Liang Y, Cheng GD (2019) Topology optimization via sequential integer programming and canonical relaxation algorithm. Comput Methods Appl Mech Eng 348:64–96MathSciNetMATHCrossRef Liang Y, Cheng GD (2019) Topology optimization via sequential integer programming and canonical relaxation algorithm. Comput Methods Appl Mech Eng 348:64–96MathSciNetMATHCrossRef
Zurück zum Zitat Liang Y, Cheng GD (2020) Further elaborations on topology optimization via sequential integer programming and canonical relaxation algorithm and 128-line MATLAB code. Struct Multidiscip Optim 61:411–431CrossRef Liang Y, Cheng GD (2020) Further elaborations on topology optimization via sequential integer programming and canonical relaxation algorithm and 128-line MATLAB code. Struct Multidiscip Optim 61:411–431CrossRef
Zurück zum Zitat Liu JK (2019) Piece wise length scale control for topology optimization with an irregular design domain. Comput Methods Appl Mech Eng 351:744–765MATHCrossRef Liu JK (2019) Piece wise length scale control for topology optimization with an irregular design domain. Comput Methods Appl Mech Eng 351:744–765MATHCrossRef
Zurück zum Zitat Luo Z, Chen L, Yang J, Zhang Y, sAbdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim 30:142–154 Luo Z, Chen L, Yang J, Zhang Y, sAbdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim 30:142–154
Zurück zum Zitat Munk DJ (2018) A bidirectional evolutionary structural optimization algorithm for mass minimization with multiple structural constraints. Int J Numer Methods Eng 118(2):93–120MathSciNet Munk DJ (2018) A bidirectional evolutionary structural optimization algorithm for mass minimization with multiple structural constraints. Int J Numer Methods Eng 118(2):93–120MathSciNet
Zurück zum Zitat Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111(3):274–272MathSciNetCrossRef Qian X (2017) Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int J Numer Methods Eng 111(3):274–272MathSciNetCrossRef
Zurück zum Zitat Rahmatalla S, Swan CC (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Methods Eng 62(12):1579–1605MATHCrossRef Rahmatalla S, Swan CC (2005) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Methods Eng 62(12):1579–1605MATHCrossRef
Zurück zum Zitat Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetMATHCrossRef Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237MathSciNetMATHCrossRef
Zurück zum Zitat Shield R, Prager W (1970) Optimal structural design for given deflection. J Appl Math Phys 21:513–523MATH Shield R, Prager W (1970) Optimal structural design for given deflection. J Appl Math Phys 21:513–523MATH
Zurück zum Zitat Shih C, Lin C (2006) A two-stage topological optimum design for monolithic compliant microgripper integrated with flexure hinges. J Phys Conf Ser 34(1):840CrossRef Shih C, Lin C (2006) A two-stage topological optimum design for monolithic compliant microgripper integrated with flexure hinges. J Phys Conf Ser 34(1):840CrossRef
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mech 25(4):495–526 Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mech 25(4):495–526
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multi discip Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multi discip Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055MathSciNetCrossRef Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055MathSciNetCrossRef
Zurück zum Zitat Sivapuram R, Picelli R (2018) Topology optimization of binary structures using integer linear programming. Finite Elem Anal Des 139:49–61MathSciNetCrossRef Sivapuram R, Picelli R (2018) Topology optimization of binary structures using integer linear programming. Finite Elem Anal Des 139:49–61MathSciNetCrossRef
Zurück zum Zitat Sivapuram R, Picelli R, Xie YM (2018) Topology optimization of binary microstructures involving various non-volume constraints. Comput Mater Sci 154:405–425CrossRef Sivapuram R, Picelli R, Xie YM (2018) Topology optimization of binary microstructures involving various non-volume constraints. Comput Mater Sci 154:405–425CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetMATHCrossRef
Zurück zum Zitat Svanberg K, Werme M (2005) A hierarchical neighbourhood search method for topology optimization. Struct Multidiscip Optim 29(5):325–340MathSciNetMATHCrossRef Svanberg K, Werme M (2005) A hierarchical neighbourhood search method for topology optimization. Struct Multidiscip Optim 29(5):325–340MathSciNetMATHCrossRef
Zurück zum Zitat Svanberg K, Werme M (2006) Topology optimization by neighborhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67:1670–1699MATHCrossRef Svanberg K, Werme M (2006) Topology optimization by neighborhood search method based on efficient sensitivity calculations. Int J Numer Methods Eng 67:1670–1699MATHCrossRef
Zurück zum Zitat Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498MATHCrossRef Tanskanen P (2002) The evolutionary structural optimization method: theoretical aspects. Comput Methods Appl Mech Eng 191(47–48):5485–5498MATHCrossRef
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetMATHCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246MathSciNetMATHCrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896 Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896
Zurück zum Zitat Xia L, Xia Q, Huang X, Xie YN (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Meth Eng 25:437–478MathSciNetMATHCrossRef Xia L, Xia Q, Huang X, Xie YN (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Meth Eng 25:437–478MathSciNetMATHCrossRef
Zurück zum Zitat Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetMATHCrossRef Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetMATHCrossRef
Zurück zum Zitat Yang K, Fernandez E, Niu C, Duysinx P, Zhu JH, Zhang WH (2019) Note on spatial gradient operators and gradient-based minimum length constraints in SIMP topology optimization. Struct Multidiscip Optim 60:393–400MathSciNetCrossRef Yang K, Fernandez E, Niu C, Duysinx P, Zhu JH, Zhang WH (2019) Note on spatial gradient operators and gradient-based minimum length constraints in SIMP topology optimization. Struct Multidiscip Optim 60:393–400MathSciNetCrossRef
Zurück zum Zitat Yin L, Ananthasuresh G (2003) Design of distributed compliant mechanisms. Mech Based Des Struct Mach 31(2):151–179CrossRef Yin L, Ananthasuresh G (2003) Design of distributed compliant mechanisms. Mech Based Des Struct Mach 31(2):151–179CrossRef
Zurück zum Zitat Yu J, Dong X, Pei X, Kong X (2012) Mobility and singularity analysis of a class of two degrees of freedom rotational parallel mechanisms using a visual graphic approach. J Mech Robot 4(4):041006CrossRef Yu J, Dong X, Pei X, Kong X (2012) Mobility and singularity analysis of a class of two degrees of freedom rotational parallel mechanisms using a visual graphic approach. J Mech Robot 4(4):041006CrossRef
Zurück zum Zitat Zhang W, Fleury C (1997) A modification of convex approximation methods for structural optimization. Comput Struct:89–95 Zhang W, Fleury C (1997) A modification of convex approximation methods for structural optimization. Comput Struct:89–95
Zurück zum Zitat Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetMATHCrossRef Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71–86MathSciNetMATHCrossRef
Zurück zum Zitat Zhang W, Li D, Zhang JX, Guo X (2016) Minimum length scale control in structural topology optimization based on the moving morphable components (mmc) approach. Comput Methods Appl Mech Eng 311:327–355MathSciNetMATHCrossRef Zhang W, Li D, Zhang JX, Guo X (2016) Minimum length scale control in structural topology optimization based on the moving morphable components (mmc) approach. Comput Methods Appl Mech Eng 311:327–355MathSciNetMATHCrossRef
Zurück zum Zitat Zhou MD, Lazarov BS, Wang FW, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282MathSciNetMATHCrossRef Zhou MD, Lazarov BS, Wang FW, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266–282MathSciNetMATHCrossRef
Zurück zum Zitat Zhou MD, Rozvany G (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21(1):80–83CrossRef Zhou MD, Rozvany G (2001) On the validity of ESO type methods in topology optimization. Struct Multidiscip Optim 21(1):80–83CrossRef
Zurück zum Zitat Zhu BL, Zhang X, Fatikow S (2014) A multi-objective method of hinge-free compliant mechanism optimization. Struct Multidiscip Optim 49(3):431–440MathSciNetCrossRef Zhu BL, Zhang X, Fatikow S (2014) A multi-objective method of hinge-free compliant mechanism optimization. Struct Multidiscip Optim 49(3):431–440MathSciNetCrossRef
Zurück zum Zitat Zhu BL, Zhang XM, Zhang HC, Liang JW, Zang HY, Li H, Wang RX (2020) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622CrossRef Zhu BL, Zhang XM, Zhang HC, Liang JW, Zang HY, Li H, Wang RX (2020) Design of compliant mechanisms using continuum topology optimization: a review. Mech Mach Theory 143:103622CrossRef
Metadaten
Titel
Discrete variable topology optimization for compliant mechanism design via Sequential Approximate Integer Programming with Trust Region (SAIP-TR)
verfasst von
Yuang Liang
Kai Sun
GengDong Cheng
Publikationsdatum
27.08.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02693-2

Weitere Artikel der Ausgabe 6/2020

Structural and Multidisciplinary Optimization 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.