Skip to main content
Erschienen in: Cognitive Computation 3/2018

01.01.2018

Discriminative Deep Belief Network for Indoor Environment Classification Using Global Visual Features

verfasst von: Nabila Zrira, Haris Ahmad Khan, El Houssine Bouyakhf

Erschienen in: Cognitive Computation | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Indoor environment classification, also known as indoor environment recognition, is a highly appreciated perceptual ability in mobile robots. In this paper, we present a novel approach which is centered on biologically inspired methods for recognition and representation of indoor environments. First, global visual features are extracted by using the GIST descriptor, and then we use the subsequent features for training the discriminative deep belief network (DDBN) classifier. DDBN employs a new deep architecture which is based on restricted Boltzmann machines (RBMs) and the joint density model. The back-propagation technique is used over the entire classifier to fine-tune the weights for an optimum classification. The acquired experimental results validate our approach as it performs well both in the real-world and in synthetic datasets and outperforms the Convolution Neural Networks (ConvNets) in terms of computational efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aboudib A, Gripon V, Coppin G. A biologically inspired framework for visual information processing and an application on modeling bottom-up visual attention. Cogn Comput. 2016;8:1–20.CrossRef Aboudib A, Gripon V, Coppin G. A biologically inspired framework for visual information processing and an application on modeling bottom-up visual attention. Cogn Comput. 2016;8:1–20.CrossRef
2.
Zurück zum Zitat Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann machines*. Cogn Sci. 1985; 9(1):147–169.CrossRef Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann machines*. Cogn Sci. 1985; 9(1):147–169.CrossRef
3.
Zurück zum Zitat Alexandre LA. 3d object recognition using convolutional neural networks with transfer learning between input channels. Intelligent Autonomous Systems 13. Springer; 2016. p. 889–898. Alexandre LA. 3d object recognition using convolutional neural networks with transfer learning between input channels. Intelligent Autonomous Systems 13. Springer; 2016. p. 889–898.
4.
Zurück zum Zitat Bengio Y. Learning deep architectures for ai. Found TrendsⓇ Mach Learn. 2009;2(1):1–127.CrossRef Bengio Y. Learning deep architectures for ai. Found TrendsⓇ Mach Learn. 2009;2(1):1–127.CrossRef
5.
Zurück zum Zitat Biederman I. 1981. On the semantics of a glance at a scene. Biederman I. 1981. On the semantics of a glance at a scene.
6.
Zurück zum Zitat Carpenter GA, Ross WD. Art-emap: A neural network architecture for object recognition by evidence accumulation. IEEE Trans Neural Netw. 1995;6(4):805–818.CrossRefPubMed Carpenter GA, Ross WD. Art-emap: A neural network architecture for object recognition by evidence accumulation. IEEE Trans Neural Netw. 1995;6(4):805–818.CrossRefPubMed
7.
Zurück zum Zitat Carreira-Perpinan MA, Hinton GE. On contrastive divergence learning. Proceedings of the tenth international workshop on artificial intelligence and statistics. Citeseer; 2005. p. 33–40. Carreira-Perpinan MA, Hinton GE. On contrastive divergence learning. Proceedings of the tenth international workshop on artificial intelligence and statistics. Citeseer; 2005. p. 33–40.
8.
Zurück zum Zitat Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 248–255. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 248–255.
9.
Zurück zum Zitat Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal Process. 2014;7(3–4):197–387.CrossRef Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal Process. 2014;7(3–4):197–387.CrossRef
10.
Zurück zum Zitat Eitel A, Springenberg JT, Spinello L, Riedmiller M, Burgard W. Multimodal deep learning for robust rgb-d object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 681–687. Eitel A, Springenberg JT, Spinello L, Riedmiller M, Burgard W. Multimodal deep learning for robust rgb-d object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2015. p. 681–687.
11.
Zurück zum Zitat Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell. 2016;38(1):142–158.CrossRefPubMed Girshick R, Donahue J, Darrell T, Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans Pattern Anal Mach Intell. 2016;38(1):142–158.CrossRefPubMed
12.
Zurück zum Zitat Gupta S, Girshick R, Arbeláez P, Malik J. Learning rich features from rgb-d images for object detection and segmentation. European Conference on Computer Vision. Springer; 2014. p. 345–360. Gupta S, Girshick R, Arbeláez P, Malik J. Learning rich features from rgb-d images for object detection and segmentation. European Conference on Computer Vision. Springer; 2014. p. 345–360.
13.
Zurück zum Zitat Harding P, Robertson NM. Visual saliency from image features with application to compression. Cogn Comput. 2013;5(1):76–98.CrossRef Harding P, Robertson NM. Visual saliency from image features with application to compression. Cogn Comput. 2013;5(1):76–98.CrossRef
14.
Zurück zum Zitat Hinton GE. A practical guide to training restricted boltzmann machines. Neural Networks: Tricks of the Trade. Springer; 2012. p. 599–619. Hinton GE. A practical guide to training restricted boltzmann machines. Neural Networks: Tricks of the Trade. Springer; 2012. p. 599–619.
15.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7):1527–1554.CrossRefPubMed Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7):1527–1554.CrossRefPubMed
16.
Zurück zum Zitat Itti L, Koch C, Niebur E, et al. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 1998;20(11):1254–1259.CrossRef Itti L, Koch C, Niebur E, et al. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 1998;20(11):1254–1259.CrossRef
17.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the ACM International Conference on Multimedia. ACM; 2014. p. 675–678. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast feature embedding. Proceedings of the ACM International Conference on Multimedia. ACM; 2014. p. 675–678.
18.
Zurück zum Zitat Jiann-Der L. Object recognition using a neural network with optimal feature extraction. Math Comput Modell. 1997;25(12):105–117.CrossRef Jiann-Der L. Object recognition using a neural network with optimal feature extraction. Math Comput Modell. 1997;25(12):105–117.CrossRef
20.
Zurück zum Zitat Kootstra G, de Boer B, Schomaker LR. Predicting eye fixations on complex visual stimuli using local symmetry. Cogn Comput. 2011;3(1):223–240.CrossRef Kootstra G, de Boer B, Schomaker LR. Predicting eye fixations on complex visual stimuli using local symmetry. Cogn Comput. 2011;3(1):223–240.CrossRef
21.
Zurück zum Zitat Larochelle H, Bengio Y. Classification using discriminative restricted boltzmann machines. Proceedings of the 25th international conference on Machine learning. ACM; 2008. p. 536–543. Larochelle H, Bengio Y. Classification using discriminative restricted boltzmann machines. Proceedings of the 25th international conference on Machine learning. ACM; 2008. p. 536–543.
22.
Zurück zum Zitat Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE; 2006. p. 2169–2178. Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE; 2006. p. 2169–2178.
23.
Zurück zum Zitat Le Meur O, Le Callet P, Barba D, Thoreau D. A coherent computational approach to model the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 2006;28:802–817.CrossRefPubMed Le Meur O, Le Callet P, Barba D, Thoreau D. A coherent computational approach to model the bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 2006;28:802–817.CrossRefPubMed
24.
Zurück zum Zitat Liang J, Yuen SY. A novel saliency prediction method based on fast radial symmetry transform and its generalization. Cogn Comput. 2016;8:1–10.CrossRef Liang J, Yuen SY. A novel saliency prediction method based on fast radial symmetry transform and its generalization. Cogn Comput. 2016;8:1–10.CrossRef
25.
Zurück zum Zitat Liu Y, Zhou S, Chen Q. Discriminative deep belief networks for visual data classification. Pattern Recogn. 2011;44(10):2287–2296.CrossRef Liu Y, Zhou S, Chen Q. Discriminative deep belief networks for visual data classification. Pattern Recogn. 2011;44(10):2287–2296.CrossRef
26.
Zurück zum Zitat Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 1007–1013. Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 1007–1013.
27.
Zurück zum Zitat Marat S, Phuoc TH, Granjon L, Guyader N, Pellerin D, Guérin-Dugué A. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int J Comput Vis 2009;82(3):231–243.CrossRef Marat S, Phuoc TH, Granjon L, Guyader N, Pellerin D, Guérin-Dugué A. Modelling spatio-temporal saliency to predict gaze direction for short videos. Int J Comput Vis 2009;82(3):231–243.CrossRef
28.
Zurück zum Zitat Marat S, Rahman A, Pellerin D, Guyader N, Houzet D. Improving visual saliency by adding ‘face feature map’ and ‘center bias’. Cogn Comput. 2013;5(1):63–75.CrossRef Marat S, Rahman A, Pellerin D, Guyader N, Houzet D. Improving visual saliency by adding ‘face feature map’ and ‘center bias’. Cogn Comput. 2013;5(1):63–75.CrossRef
29.
Zurück zum Zitat Mishra AK, Aloimonos Y. Active segmentation. Int J Humanoid Robot 2009;6(03):361–386.CrossRef Mishra AK, Aloimonos Y. Active segmentation. Int J Humanoid Robot 2009;6(03):361–386.CrossRef
30.
Zurück zum Zitat Mohamed Ar, Dahl G, Hinton G. Deep belief networks for phone recognition. Nips workshop on deep learning for speech recognition and related applications; 2009. p. 39. Mohamed Ar, Dahl G, Hinton G. Deep belief networks for phone recognition. Nips workshop on deep learning for speech recognition and related applications; 2009. p. 39.
31.
Zurück zum Zitat Oliva A, Torralba A. Building the gist of a scene: The role of global image features in recognition. Progress Brain Res 2006;155:23–36.CrossRef Oliva A, Torralba A. Building the gist of a scene: The role of global image features in recognition. Progress Brain Res 2006;155:23–36.CrossRef
32.
Zurück zum Zitat Ouadiay FZ, Zrira N, Bouyakhf EH, Himmi MM. 3d object categorization and recognition based on deep belief networks and point clouds. Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics; 2016. p. 311–318. Ouadiay FZ, Zrira N, Bouyakhf EH, Himmi MM. 3d object categorization and recognition based on deep belief networks and point clouds. Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics; 2016. p. 311–318.
33.
Zurück zum Zitat Pandey M, Lazebnik S. Scene recognition and weakly supervised object localization with deformable part-based models. 2011 IEEE International Conference on Computer Vision (ICCV). IEEE; 2011. p. 1307–1314. Pandey M, Lazebnik S. Scene recognition and weakly supervised object localization with deformable part-based models. 2011 IEEE International Conference on Computer Vision (ICCV). IEEE; 2011. p. 1307–1314.
34.
Zurück zum Zitat Quattoni A, Torralba A. Recognizing indoor scenes. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 413–420. Quattoni A, Torralba A. Recognizing indoor scenes. 2009. CVPR 2009. IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 413–420.
35.
Zurück zum Zitat Ripley BD. Pattern recognition and neural networks. Cambridge: Cambridge University Press; 2007. Ripley BD. Pattern recognition and neural networks. Cambridge: Cambridge University Press; 2007.
36.
Zurück zum Zitat Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Progress Brain Res 2007;165:33–56.CrossRef Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Progress Brain Res 2007;165:33–56.CrossRef
37.
Zurück zum Zitat Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 2007;29(2):300–312.CrossRefPubMed Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 2007;29(2):300–312.CrossRefPubMed
38.
Zurück zum Zitat Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 2007;29(2):300–312.CrossRefPubMed Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 2007;29(2):300–312.CrossRefPubMed
40.
Zurück zum Zitat Socher R, Huval B, Bath B, Manning CD, Ng AY. Convolutional-recursive deep learning for 3d object classification. Advances in Neural Information Processing Systems; 2012. p. 665–673. Socher R, Huval B, Bath B, Manning CD, Ng AY. Convolutional-recursive deep learning for 3d object classification. Advances in Neural Information Processing Systems; 2012. p. 665–673.
41.
Zurück zum Zitat Szummer M, Picard RW. Indoor-outdoor image classification. 1998. Proceedings., 1998 IEEE International Workshop on Content-Based Access of Image and Video Database. IEEE; 1998. p. 42–51. Szummer M, Picard RW. Indoor-outdoor image classification. 1998. Proceedings., 1998 IEEE International Workshop on Content-Based Access of Image and Video Database. IEEE; 1998. p. 42–51.
42.
Zurück zum Zitat Tieleman T. Training restricted boltzmann machines using approximations to the likelihood gradient. Proceedings of the 25th international conference on Machine learning. ACM; 2008. p. 1064–1071. Tieleman T. Training restricted boltzmann machines using approximations to the likelihood gradient. Proceedings of the 25th international conference on Machine learning. ACM; 2008. p. 1064–1071.
43.
Zurück zum Zitat Tu Z, Abel A, Zhang L, Luo B, Hussain A. A new spatio-temporal saliency-based video object segmentation. Cogn Comput. 2016;8:1–19. Tu Z, Abel A, Zhang L, Luo B, Hussain A. A new spatio-temporal saliency-based video object segmentation. Cogn Comput. 2016;8:1–19.
44.
Zurück zum Zitat Tünnermann J, Mertsching B. Region-based artificial visual attention in space and time. Cogn Comput 2014;6 (1):125–143.CrossRef Tünnermann J, Mertsching B. Region-based artificial visual attention in space and time. Cogn Comput 2014;6 (1):125–143.CrossRef
45.
Zurück zum Zitat Ulrich I, Nourbakhsh I. Appearance-based place recognition for topological localization. 2000. Proceedings. ICRA’00. IEEE International Conference on Robotics and Automation. IEEE; 2000. p. 1023–1029. Ulrich I, Nourbakhsh I. Appearance-based place recognition for topological localization. 2000. Proceedings. ICRA’00. IEEE International Conference on Robotics and Automation. IEEE; 2000. p. 1023–1029.
46.
Zurück zum Zitat Wang Y, Zhao Q, Wang B, Wang S, Zhang Y, Guo W, Feng Z. A real-time active pedestrian tracking system inspired by the human visual system. Cogn Comput 2015;8:1–13. Wang Y, Zhao Q, Wang B, Wang S, Zhang Y, Guo W, Feng Z. A real-time active pedestrian tracking system inspired by the human visual system. Cogn Comput 2015;8:1–13.
47.
Zurück zum Zitat Zeng N, Wang Z, Zhang H, Liu W, Alsaadi FE. Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Cogn Comput 2016;8:1–9.CrossRef Zeng N, Wang Z, Zhang H, Liu W, Alsaadi FE. Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Cogn Comput 2016;8:1–9.CrossRef
48.
Zurück zum Zitat Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput 2015;7(1):20–33.CrossRef Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput 2015;7(1):20–33.CrossRef
49.
Zurück zum Zitat Zhao J, Sun S, Liu X, Sun J, Yang A. A novel biologically inspired visual saliency model. Cogn Comput 2014;6(4):841–848.CrossRef Zhao J, Sun S, Liu X, Sun J, Yang A. A novel biologically inspired visual saliency model. Cogn Comput 2014;6(4):841–848.CrossRef
50.
Zurück zum Zitat Zhou B, Khosla A, Lapedriza A, Torralba A, Oliva A. Places: An image database for deep scene understanding. (2016) arXiv:1610.02055. Zhou B, Khosla A, Lapedriza A, Torralba A, Oliva A. Places: An image database for deep scene understanding. (2016) arXiv:1610.​02055.
51.
Zurück zum Zitat Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. Learning deep features for scene recognition using places database. Advances in neural information processing systems; 2014. p. 487–495. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A. Learning deep features for scene recognition using places database. Advances in neural information processing systems; 2014. p. 487–495.
52.
Zurück zum Zitat Zhou S, Chen Q, Wang X. Discriminative deep belief networks for image classification. 2010 IEEE International Conference on Image Processing. IEEE; 2010. p. 1561–1564. Zhou S, Chen Q, Wang X. Discriminative deep belief networks for image classification. 2010 IEEE International Conference on Image Processing. IEEE; 2010. p. 1561–1564.
53.
Zurück zum Zitat Zrira N, Bouyakhf EH. 2016. A novel incremental topological mapping using global visual features. International Journal of Computational Vision and Robotics. In press. Zrira N, Bouyakhf EH. 2016. A novel incremental topological mapping using global visual features. International Journal of Computational Vision and Robotics. In press.
54.
Zurück zum Zitat Zuo Z, Wang G, Shuai B, Zhao L, Yang Q, Jiang X. Learning discriminative and shareable features for scene classification. Computer Vision–ECCV 2014. Springer; 2014. p. 552–568. Zuo Z, Wang G, Shuai B, Zhao L, Yang Q, Jiang X. Learning discriminative and shareable features for scene classification. Computer Vision–ECCV 2014. Springer; 2014. p. 552–568.
Metadaten
Titel
Discriminative Deep Belief Network for Indoor Environment Classification Using Global Visual Features
verfasst von
Nabila Zrira
Haris Ahmad Khan
El Houssine Bouyakhf
Publikationsdatum
01.01.2018
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 3/2018
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9534-9

Weitere Artikel der Ausgabe 3/2018

Cognitive Computation 3/2018 Zur Ausgabe