Skip to main content
Erschienen in: Cluster Computing 4/2019

14.02.2018

Dispersion analysis and calculation on Cherenkov radiation of an accelerated electron beam in poloidal magnetized plasma

verfasst von: Wei Tian, Junming Zhang, Li Wang, Jing Cao, Jinrong Fan, Kataoka Takaki

Erschienen in: Cluster Computing | Sonderheft 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to further study on radiation of a moving electron in poloidal magnetized plasma (PMP), theoretical analysis and simulation calculation of Cherenkov radiation (CR) under the condition of an accelerated electron beam in PMP are respectively presented in this paper. Through analysis of dielectric tensor in poloidal magnetized plasma with uniformly accelerated electron and description of beam-wave interaction in PMP by Maxwell’s equations, radiation mechanism of uniformly accelerated electron CR in PMP is described. Then eigenvalue and radiation condition are respectively obtained. Moreover, dispersion relation of radiation wave is also deduced through analysis of eigenvalues. At the same time, through analysis of effect that cyclotron frequency and plasma frequency have on eigenvalue, it is discovered that plasma frequency has great effect on not only p1 mode but also p2 mode, but cyclotron frequency only affects p2 mode. Finally, through simulation calculation, dispersion curves of both p1 mode and p2 mode are presented. Through comparing to the case of uniform moving electrons, the radiation conditions of the accelerated electrons are more relaxed, more prone to generate radiation. The theoretical analysis and simulation calculation can provide for further research of the radiation microwave in PMP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu, S.G., Zhang, P., Liu, W.H., et al.: Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 109(15), 153902 (2012)CrossRef Liu, S.G., Zhang, P., Liu, W.H., et al.: Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 109(15), 153902 (2012)CrossRef
2.
Zurück zum Zitat Yasumoto, K., Shigematsu, H.: Analysis of propagation characteristics of radio waves in tunnels using a surface impedance approximation. Radio Sci. 19(2), 597–602 (1984)CrossRef Yasumoto, K., Shigematsu, H.: Analysis of propagation characteristics of radio waves in tunnels using a surface impedance approximation. Radio Sci. 19(2), 597–602 (1984)CrossRef
3.
Zurück zum Zitat Shchagin, A.V.: Fresnel coefficients for parametric X-ray (Cherenkov) radiation. Phys. Usp. 58(8), 819–827 (2015)CrossRef Shchagin, A.V.: Fresnel coefficients for parametric X-ray (Cherenkov) radiation. Phys. Usp. 58(8), 819–827 (2015)CrossRef
4.
Zurück zum Zitat Harms, J., Rose, P.B., Erickson, A.: Characterization of gamma-ray cross talk in Cherenkov-based detectors for active interrogation imaging applications. IEEE Sens. J. 17(20), 6707–6715 (2017)CrossRef Harms, J., Rose, P.B., Erickson, A.: Characterization of gamma-ray cross talk in Cherenkov-based detectors for active interrogation imaging applications. IEEE Sens. J. 17(20), 6707–6715 (2017)CrossRef
5.
Zurück zum Zitat Liu, S.G., Zhang, Y.X., Yan, Y., et al.: Cherenkov radiation by an electron bunch moving in Hermitian medium. J. Appl. Phys. 102(4), 044901 (2007)CrossRef Liu, S.G., Zhang, Y.X., Yan, Y., et al.: Cherenkov radiation by an electron bunch moving in Hermitian medium. J. Appl. Phys. 102(4), 044901 (2007)CrossRef
6.
Zurück zum Zitat Dobrynina, A.A., Mikheev, N.V., Raffelt, G.G.: Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma. Phys. Rev. D 90(11), 113015 (2014)CrossRef Dobrynina, A.A., Mikheev, N.V., Raffelt, G.G.: Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma. Phys. Rev. D 90(11), 113015 (2014)CrossRef
7.
Zurück zum Zitat Li, L.M., Cheng, G.X., Zhang, L., et al.: Role of the rise rate of beam current in the microwave radiation of vircator. J. Appl. Phys. 109(7), 074504 (2011)CrossRef Li, L.M., Cheng, G.X., Zhang, L., et al.: Role of the rise rate of beam current in the microwave radiation of vircator. J. Appl. Phys. 109(7), 074504 (2011)CrossRef
8.
Zurück zum Zitat Kartashov, I.N., Kuzelev, M.V.: Cherenkov instability of a magnetized beam-plasma system with allowance for a momentum spread of beam electrons. Phys. Wave Phenom. 25(1), 43–51 (2017)CrossRef Kartashov, I.N., Kuzelev, M.V.: Cherenkov instability of a magnetized beam-plasma system with allowance for a momentum spread of beam electrons. Phys. Wave Phenom. 25(1), 43–51 (2017)CrossRef
9.
Zurück zum Zitat Chen, C.M., Bai, Y.L., Zhang, J., et al.: Numerical study of oblique incidence of terahertz wave to magnetized plasma. High Power Laser Part. Beams 30(1), 51–55 (2018) Chen, C.M., Bai, Y.L., Zhang, J., et al.: Numerical study of oblique incidence of terahertz wave to magnetized plasma. High Power Laser Part. Beams 30(1), 51–55 (2018)
10.
Zurück zum Zitat Hematizadeh, A., Jazayeri, S.M.: Study of terahertz radiation generation by two laser beams in an axial magnetized rippled density plasma. IEEE Trans. Plasma Sci. 45(7), 1717–1722 (2017)CrossRef Hematizadeh, A., Jazayeri, S.M.: Study of terahertz radiation generation by two laser beams in an axial magnetized rippled density plasma. IEEE Trans. Plasma Sci. 45(7), 1717–1722 (2017)CrossRef
11.
Zurück zum Zitat Shao, T., Liu, F., Hai, B., et al.: Surface modification of epoxy using an atmospheric pressure DBD to accelerate surface charge dissipation. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1557–1565 (2017)CrossRef Shao, T., Liu, F., Hai, B., et al.: Surface modification of epoxy using an atmospheric pressure DBD to accelerate surface charge dissipation. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1557–1565 (2017)CrossRef
12.
Zurück zum Zitat Tian, W., Chen, S.X., Xiao, J.X., et al.: Dispersion of Cherenkov radiation by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 158(11), 274–278 (2013) Tian, W., Chen, S.X., Xiao, J.X., et al.: Dispersion of Cherenkov radiation by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 158(11), 274–278 (2013)
13.
Zurück zum Zitat Gai, F., Chen, S.X., Chen, K., Li, J., et al.: Conduction characteristics of long-gap triggered vacuum switch. High Power Laser Part. Beams 24(4), 847–850 (2012)CrossRef Gai, F., Chen, S.X., Chen, K., Li, J., et al.: Conduction characteristics of long-gap triggered vacuum switch. High Power Laser Part. Beams 24(4), 847–850 (2012)CrossRef
14.
Zurück zum Zitat Zhang, W.X., Zhao, X.P., Zhao, S.T., et al.: Study on partial discharge detection of 10 kV power cable. Telkomnika 10(7), 1795–1799 (2012)MathSciNet Zhang, W.X., Zhao, X.P., Zhao, S.T., et al.: Study on partial discharge detection of 10 kV power cable. Telkomnika 10(7), 1795–1799 (2012)MathSciNet
15.
Zurück zum Zitat Tian, W., Gai, F., Chen, S.X., et al.: Experiment study on influence of trigger current on conduction characteristics of triggered vacuum switches. Trans. China Electrotech. Soc. 32(20), 28–33 (2017) Tian, W., Gai, F., Chen, S.X., et al.: Experiment study on influence of trigger current on conduction characteristics of triggered vacuum switches. Trans. China Electrotech. Soc. 32(20), 28–33 (2017)
16.
Zurück zum Zitat Li, X., Zhou, Z.S., Chen, P.Y., et al.: Study and application of the multi-gap for gas discharge. Trans. China Electrotech. Soc. 32(20), 70–76 (2017) Li, X., Zhou, Z.S., Chen, P.Y., et al.: Study and application of the multi-gap for gas discharge. Trans. China Electrotech. Soc. 32(20), 70–76 (2017)
17.
Zurück zum Zitat Wang, R.X., Hai, B., Tian, S.L., et al.: Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics. High Volt. Eng. 43(6), 1808–1815 (2017) Wang, R.X., Hai, B., Tian, S.L., et al.: Optimization of dielectric material surface charge measurement and impact of plasma treatment on their surface electrical characteristics. High Volt. Eng. 43(6), 1808–1815 (2017)
18.
Zurück zum Zitat Tian, W., Chen, S.X., Gai, F., et al.: Analysis of Cherenkov angle by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 32(5), 3637–3646 (2014) Tian, W., Chen, S.X., Gai, F., et al.: Analysis of Cherenkov angle by electron uniform moving in poloidal magnetized plasma. Sens. Transducers 32(5), 3637–3646 (2014)
Metadaten
Titel
Dispersion analysis and calculation on Cherenkov radiation of an accelerated electron beam in poloidal magnetized plasma
verfasst von
Wei Tian
Junming Zhang
Li Wang
Jing Cao
Jinrong Fan
Kataoka Takaki
Publikationsdatum
14.02.2018
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe Sonderheft 4/2019
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-018-2007-4

Weitere Artikel der Sonderheft 4/2019

Cluster Computing 4/2019 Zur Ausgabe