Skip to main content
Erschienen in: Acta Mechanica 8/2019

31.05.2019 | Original Paper

Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption

verfasst von: Q. Q. Li, Z. C. He, Eric Li

Erschienen in: Acta Mechanica | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the interesting phenomena of stress waves attenuation and impact energy dissipation by the application of multi-resonator dissipative acoustic metamaterials (DAMs) with Kelvin–Voigt-type (KVT), Maxwell-type (MT) and Zener-type (ZT) oscillators. The theoretical analyses show that these microstructures have broad negative effective mass frequency regions and high effective metadamping coefficient. The numerical results prove that the damping characteristics can gather the multiple band gaps of the elastic multi-resonator metamaterial together. KVT oscillators present the best performances in impact load mitigation and collision energy dissipation among these DAMs. With very small damping coefficients, the attenuation and dissipation effects of MT models are poor, and the performances of ZT and KVT models are similar. By properly tailoring the damping, the performances of KVT and MT are significantly improved. Meanwhile, the influence of damping on the performances of ZT oscillators is less compared with KVT and MT models.
Literatur
1.
Zurück zum Zitat Chen, H., Li, X.P., Chen, Y.Y., Huang, G.L.: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics 76, 99–108 (2017)CrossRef Chen, H., Li, X.P., Chen, Y.Y., Huang, G.L.: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics 76, 99–108 (2017)CrossRef
2.
Zurück zum Zitat Li, Y., Zhu, L., Chen, T.: Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Ultrasonics 73, 34–42 (2017)CrossRef Li, Y., Zhu, L., Chen, T.: Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation. Ultrasonics 73, 34–42 (2017)CrossRef
3.
Zurück zum Zitat Zhou, Y.H., Wei, P.J., Tang, Q.H.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)MathSciNetCrossRefMATH Zhou, Y.H., Wei, P.J., Tang, Q.H.: Continuum model of a one-dimensional lattice of metamaterials. Acta Mech. 227, 2361–2376 (2016)MathSciNetCrossRefMATH
4.
Zurück zum Zitat He, Z., Hu, J., Li, E.: An uncertainty model of acoustic metamaterials with random parameters. In: Computational Mechanics, pp. 1–14 (2018) He, Z., Hu, J., Li, E.: An uncertainty model of acoustic metamaterials with random parameters. In: Computational Mechanics, pp. 1–14 (2018)
5.
Zurück zum Zitat Li, E., He, Z., Wang, G., Jong, Y.: Fundamental study of mechanism of band gap in fluid and solid/fluid phononic crystals. Adv. Eng. Softw. 121, 167–177 (2018)CrossRef Li, E., He, Z., Wang, G., Jong, Y.: Fundamental study of mechanism of band gap in fluid and solid/fluid phononic crystals. Adv. Eng. Softw. 121, 167–177 (2018)CrossRef
6.
Zurück zum Zitat Li, E., He, Z., Wang, G., Liu, G.: An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput. Methods Appl. Mech. Eng. 333, 421–442 (2018)MathSciNetCrossRef Li, E., He, Z., Wang, G., Liu, G.: An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals. Comput. Methods Appl. Mech. Eng. 333, 421–442 (2018)MathSciNetCrossRef
7.
Zurück zum Zitat Xiao, X., He, Z.C., Li, E., Cheng, A.G.: Design multi-stopband laminate acoustic metamaterials for structural-acoustic coupled system. Mech. Syst. Signal Process. 115, 418–433 (2019)CrossRef Xiao, X., He, Z.C., Li, E., Cheng, A.G.: Design multi-stopband laminate acoustic metamaterials for structural-acoustic coupled system. Mech. Syst. Signal Process. 115, 418–433 (2019)CrossRef
8.
Zurück zum Zitat Figotin, A., Vitebskiy, I.: Slow light in photonic crystals. Waves Random Complex Media 36, 282–284 (2006)MathSciNetMATH Figotin, A., Vitebskiy, I.: Slow light in photonic crystals. Waves Random Complex Media 36, 282–284 (2006)MathSciNetMATH
9.
Zurück zum Zitat Notomi, M.: Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696 (2000)CrossRef Notomi, M.: Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696 (2000)CrossRef
10.
Zurück zum Zitat Baena, J.D., Marqués, R., Medina, F., Martel, J.: Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004)CrossRef Baena, J.D., Marqués, R., Medina, F., Martel, J.: Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 69, 014402 (2004)CrossRef
11.
Zurück zum Zitat Klein, M.W., Wegener, M., Feth, N., Linden, S.: Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15, 5238–5247 (2007)CrossRef Klein, M.W., Wegener, M., Feth, N., Linden, S.: Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt. Express 15, 5238–5247 (2007)CrossRef
12.
Zurück zum Zitat Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)CrossRef Padilla, W.J., Taylor, A.J., Highstrete, C., Lee, M., Averitt, R.D.: Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett. 96, 107401 (2006)CrossRef
13.
Zurück zum Zitat He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227, 1–16 (2016)MathSciNetCrossRef He, Z.C., Li, E., Wang, G., Li, G.Y., Xia, Z.: Development of an efficient algorithm to analyze the elastic wave in acoustic metamaterials. Acta Mech. 227, 1–16 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat He, Z.C., Xiao, X., Li, E.: Design for structural vibration suppression in laminate acoustic metamaterials. Compos. Part B Eng. 131, 237–252 (2017)CrossRef He, Z.C., Xiao, X., Li, E.: Design for structural vibration suppression in laminate acoustic metamaterials. Compos. Part B Eng. 131, 237–252 (2017)CrossRef
15.
Zurück zum Zitat Li, E., He, Z.C., Hu, J.Y., Long, X.Y.: Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput. Methods Appl. Mech. Eng. 324, 128–148 (2017)MathSciNetCrossRef Li, E., He, Z.C., Hu, J.Y., Long, X.Y.: Volumetric locking issue with uncertainty in the design of locally resonant acoustic metamaterials. Comput. Methods Appl. Mech. Eng. 324, 128–148 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Li, E., He, Z.C., Wang, G.: An exact solution to compute the band gap in phononic crystals. Comput. Mater. Sci. 122, 72–85 (2016)CrossRef Li, E., He, Z.C., Wang, G.: An exact solution to compute the band gap in phononic crystals. Comput. Mater. Sci. 122, 72–85 (2016)CrossRef
17.
Zurück zum Zitat Li, E., He, Z.C., Wang, G., Liu, G.R.: An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput. Mech. 60, 1–14 (2017)MathSciNetCrossRef Li, E., He, Z.C., Wang, G., Liu, G.R.: An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion. Comput. Mech. 60, 1–14 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Xiaoming, Z., Xiaoning, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2, 1–12 (2012) Xiaoming, Z., Xiaoning, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2, 1–12 (2012)
19.
Zurück zum Zitat Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375(30), 2863–2867 (2011)CrossRef Zhu, R., Huang, G.L., Huang, H.H., Sun, C.T.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 375(30), 2863–2867 (2011)CrossRef
20.
Zurück zum Zitat Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRef Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)CrossRef
21.
Zurück zum Zitat Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6, 14–40 (2015)CrossRef Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6, 14–40 (2015)CrossRef
22.
Zurück zum Zitat Islam, M.T., Newaz, G.: Metamaterial with mass-stem array in acoustic cavity. Appl. Phys. Lett. 100, 509 (2012)CrossRef Islam, M.T., Newaz, G.: Metamaterial with mass-stem array in acoustic cavity. Appl. Phys. Lett. 100, 509 (2012)CrossRef
23.
Zurück zum Zitat Yang, Z., Dai, H.M., Chan, N.H., Ma, G.C., Sheng, P.: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 1821–1833 (2010) Yang, Z., Dai, H.M., Chan, N.H., Ma, G.C., Sheng, P.: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 1821–1833 (2010)
24.
Zurück zum Zitat Ang, L.Y.L., Yong, K.K., Lee, H.P.: Acoustic metamaterials: a potential for cabin noise control in automobiles and armored vehicles. Int. J. Appl. Mech. 08, 1650072 (2016)CrossRef Ang, L.Y.L., Yong, K.K., Lee, H.P.: Acoustic metamaterials: a potential for cabin noise control in automobiles and armored vehicles. Int. J. Appl. Mech. 08, 1650072 (2016)CrossRef
25.
Zurück zum Zitat Billon, K., Zampetakis, I., Scarpa, F., Ouisse, M., Sadoulet-Reboul, E., Collet, M., et al.: Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Compos. Struct. 160, 1042–1050 (2016)CrossRef Billon, K., Zampetakis, I., Scarpa, F., Ouisse, M., Sadoulet-Reboul, E., Collet, M., et al.: Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Compos. Struct. 160, 1042–1050 (2016)CrossRef
26.
Zurück zum Zitat Liu, Z., Rumpler, R., Feng, L.: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region. Compos. Struct. 200, 165–172 (2018)CrossRef Liu, Z., Rumpler, R., Feng, L.: Broadband locally resonant metamaterial sandwich plate for improved noise insulation in the coincidence region. Compos. Struct. 200, 165–172 (2018)CrossRef
27.
Zurück zum Zitat Shi, H.Y.Y., Tay, T.E., Lee, H.P.: Numerical studies on composite meta-material structure for mid to low frequency elastic wave mitigation. Compos. Struct. 195, 136–146 (2018)CrossRef Shi, H.Y.Y., Tay, T.E., Lee, H.P.: Numerical studies on composite meta-material structure for mid to low frequency elastic wave mitigation. Compos. Struct. 195, 136–146 (2018)CrossRef
28.
Zurück zum Zitat Song, G.Y., Cheng, Q., Huang, B., Dong, H.Y., Cui, T.J.: Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Appl. Phys. Lett. 109(13), 131901 (2016)CrossRef Song, G.Y., Cheng, Q., Huang, B., Dong, H.Y., Cui, T.J.: Broadband fractal acoustic metamaterials for low-frequency sound attenuation. Appl. Phys. Lett. 109(13), 131901 (2016)CrossRef
29.
Zurück zum Zitat Wang, X., Zhao, H., Luo, X., Huang, Z.: Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl. Phys. Lett. 108(4), 1734 (2016) Wang, X., Zhao, H., Luo, X., Huang, Z.: Membrane-constrained acoustic metamaterials for low frequency sound insulation. Appl. Phys. Lett. 108(4), 1734 (2016)
30.
Zurück zum Zitat Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 194301 (2009)CrossRef Zhang, S., Yin, L., Fang, N.: Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102(19), 194301 (2009)CrossRef
31.
Zurück zum Zitat Gonella, S., To, A.C., Liu, W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2016)CrossRefMATH Gonella, S., To, A.C., Liu, W.K.: Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J. Mech. Phys. Solids 57, 621–633 (2016)CrossRefMATH
32.
Zurück zum Zitat Mikoshiba, K., Manimala, J.M., Sun, C.T.: Energy harvesting using an array of multifunctional resonators. J. Intell. Mater. Syst. Struct. 24, 168–179 (2013)CrossRef Mikoshiba, K., Manimala, J.M., Sun, C.T.: Energy harvesting using an array of multifunctional resonators. J. Intell. Mater. Syst. Struct. 24, 168–179 (2013)CrossRef
33.
Zurück zum Zitat Cselyuszka, N., Sečujski, M., Crnojević-Bengin, V.: Novel negative mass density resonant metamaterial unit cell. Phys. Lett. A 379, 33–36 (2015)CrossRef Cselyuszka, N., Sečujski, M., Crnojević-Bengin, V.: Novel negative mass density resonant metamaterial unit cell. Phys. Lett. A 379, 33–36 (2015)CrossRef
34.
Zurück zum Zitat Assouar, B., Oudich, M., Zhou, X.: Acoustic metamaterials for sound mitigation. C. R. Phys. 17, 524–532 (2016)CrossRef Assouar, B., Oudich, M., Zhou, X.: Acoustic metamaterials for sound mitigation. C. R. Phys. 17, 524–532 (2016)CrossRef
35.
Zurück zum Zitat Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRef Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51, 1534–1541 (2014)CrossRef
36.
Zurück zum Zitat Alamri, S., Li, B., Tan, K.T.: Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators. J. Appl. Phys. 123, 095111 (2018)CrossRef Alamri, S., Li, B., Tan, K.T.: Dynamic load mitigation using dissipative elastic metamaterials with multiple Maxwell-type oscillators. J. Appl. Phys. 123, 095111 (2018)CrossRef
37.
Zurück zum Zitat Khan, M.H., Li, B., Tan, K.T.: Impact load wave transmission in elastic metamaterials. Int. J. Impact Eng. 118, 50–59 (2018)CrossRef Khan, M.H., Li, B., Tan, K.T.: Impact load wave transmission in elastic metamaterials. Int. J. Impact Eng. 118, 50–59 (2018)CrossRef
38.
Zurück zum Zitat Li, B., Liu, Y., Tan, K.T., Li, B., Liu, Y., Tan, K.T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandw. Struct. Mater. 1–26 (2017) Li, B., Liu, Y., Tan, K.T., Li, B., Liu, Y., Tan, K.T.: A novel meta-lattice sandwich structure for dynamic load mitigation. J. Sandw. Struct. Mater. 1–26 (2017)
39.
Zurück zum Zitat Naify, C.J., Chang, C.M., Mcknight, G., Nutt, S.: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 751 (2011)CrossRef Naify, C.J., Chang, C.M., Mcknight, G., Nutt, S.: Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 110, 751 (2011)CrossRef
40.
Zurück zum Zitat Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)CrossRef Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)CrossRef
41.
Zurück zum Zitat Pope, S.A., Daley, S.: Viscoelastic locally resonant double negative metamaterials with controllable effective density and elasticity. Phys. Lett. A 374, 4250–4255 (2010)CrossRefMATH Pope, S.A., Daley, S.: Viscoelastic locally resonant double negative metamaterials with controllable effective density and elasticity. Phys. Lett. A 374, 4250–4255 (2010)CrossRefMATH
42.
Zurück zum Zitat Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 1015–1016 (2010)CrossRef Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132, 1015–1016 (2010)CrossRef
43.
Zurück zum Zitat Lakes, R.S., Lee, T., Bersie, A., Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)CrossRef Lakes, R.S., Lee, T., Bersie, A., Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)CrossRef
44.
Zurück zum Zitat Tan, K.T., Huang, H.H., Sun, C.T.: Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett. 101(24), 3966 (2012) Tan, K.T., Huang, H.H., Sun, C.T.: Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett. 101(24), 3966 (2012)
45.
Zurück zum Zitat Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014)CrossRef Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014)CrossRef
46.
Zurück zum Zitat Chen, H., Li, X.P., Chen, Y.Y., Huang, G.L.: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics 76, 99–108 (2016)CrossRef Chen, H., Li, X.P., Chen, Y.Y., Huang, G.L.: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics 76, 99–108 (2016)CrossRef
47.
Zurück zum Zitat Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015)CrossRef Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015)CrossRef
48.
Zurück zum Zitat Chen, Y.Y., Barnhart, M.V., Chen, J.K., Hu, G.K., Sun, C.T., Huang, G.L.: Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos. Struct. 136, 358–371 (2016)CrossRef Chen, Y.Y., Barnhart, M.V., Chen, J.K., Hu, G.K., Sun, C.T., Huang, G.L.: Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos. Struct. 136, 358–371 (2016)CrossRef
49.
Zurück zum Zitat Barnhart, M.V., Xianchen, X., Yangyang, C., Shun, Z., Jizhou, S., Guoliang, H.: Experimental demonstration of a dissipative multi-resonator metmaterial for broadband elastic wave attenuation. J. Sound Vib. 438, 1–12 (2019)CrossRef Barnhart, M.V., Xianchen, X., Yangyang, C., Shun, Z., Jizhou, S., Guoliang, H.: Experimental demonstration of a dissipative multi-resonator metmaterial for broadband elastic wave attenuation. J. Sound Vib. 438, 1–12 (2019)CrossRef
50.
Zurück zum Zitat Merheb, B., Deymier, P.A., Muralidharan, K., Bucay, J., Jain, M., Aloshynalesuffleur, M., et al.: Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mater. Sci. Eng. 17(7), 75013–75013 (2015)CrossRef Merheb, B., Deymier, P.A., Muralidharan, K., Bucay, J., Jain, M., Aloshynalesuffleur, M., et al.: Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mater. Sci. Eng. 17(7), 75013–75013 (2015)CrossRef
51.
Zurück zum Zitat Hussein, M.I., Frazier, M.J.: Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013)CrossRef Hussein, M.I., Frazier, M.J.: Metadamping: an emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013)CrossRef
52.
Zurück zum Zitat Zapfe, J., Lesieutre, G:. Broadband vibration damping in beams using distributed viscoelastic tuned mass absorbers. In: Structure, Structural Dynamics and Materials Conference (2013) Zapfe, J., Lesieutre, G:. Broadband vibration damping in beams using distributed viscoelastic tuned mass absorbers. In: Structure, Structural Dynamics and Materials Conference (2013)
53.
Zurück zum Zitat Thompson, D.J.: A continuous damped vibration absorber to reduce broad-band wave propagation in beams. J. Sound Vib. 311, 824–842 (2008)CrossRef Thompson, D.J.: A continuous damped vibration absorber to reduce broad-band wave propagation in beams. J. Sound Vib. 311, 824–842 (2008)CrossRef
54.
Zurück zum Zitat Carrara, M., Ruzzene, M.: High stiffness, high damping chiral metamaterial assemblies for low-frequency applications. In: Health Monitoring of Structural and Biological Systems (2013) Carrara, M., Ruzzene, M.: High stiffness, high damping chiral metamaterial assemblies for low-frequency applications. In: Health Monitoring of Structural and Biological Systems (2013)
55.
Zurück zum Zitat Li, Q.Q., Song, K., He, Z.C., Li, E., Cheng, A.G., Chen, T.: The artificial tree (AT) algorithm. Eng. Appl. Artif. Intell. 65, 99–110 (2017)CrossRef Li, Q.Q., Song, K., He, Z.C., Li, E., Cheng, A.G., Chen, T.: The artificial tree (AT) algorithm. Eng. Appl. Artif. Intell. 65, 99–110 (2017)CrossRef
Metadaten
Titel
Dissipative multi-resonator acoustic metamaterials for impact force mitigation and collision energy absorption
verfasst von
Q. Q. Li
Z. C. He
Eric Li
Publikationsdatum
31.05.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02437-4

Weitere Artikel der Ausgabe 8/2019

Acta Mechanica 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.