Skip to main content
Erschienen in: Neural Computing and Applications 15/2021

24.01.2021 | Review

Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications

verfasst von: Miha Moškon, Roman Komac, Nikolaj Zimic, Miha Mraz

Erschienen in: Neural Computing and Applications | Ausgabe 15/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ever since its foundational years, synthetic biology has been focused on the implementation of biological computing structures. In the beginning, engineered biological computation has mainly been based on uncoupled monoclonal cellular populations. Implementations of such computing structures were mostly inspired by digital electronic circuits and revealed many constraints that limited the advance of the field to relatively simple information processing structures. The focus has recently shifted towards the implementation of biological computing structures within coupled intercellular circuits composed of engineered cellular modules. These circuits have, however, advanced only to a certain point, namely to consist of a few engineered bacterial strains, which perform the computation. It is now time to make a transition from modules and relatively simple systems of biological processing structures to networks composing different strains each presenting a designated computing structure. In such networks, each strain is analogous to a logic chip on a breadboard circuit and is connected to other strains by means of intercellular communication mechanisms rather than copper wires. This analogy can be driven further to use a set of engineered biological modules to construct a complex computing system, such as a multicellular biological processor. We review the state of the art of distributed cellular computation, communication mechanisms, and computational analysis and design approaches for distributed biological computing. We demonstrate the potential next step in engineered biological computation by a proposal of a design of a multicellular biological processor. We demonstrate an analysis of the proposed computing network using in silico simulation and optimisation approaches. Finally, we discuss the potential applications of the reviewed distributed cellular computing structures to the field of neural computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Grozinger L, Amos M, Gorochowski TE, Carbonell P, Oyarzún DA, Stoof R, Fellermann H, Zuliani P, Tas H, Goñi-Moreno A (2019) Pathways to cellular supremacy in biocomputing. Nat Commun 10(1):1–11CrossRef Grozinger L, Amos M, Gorochowski TE, Carbonell P, Oyarzún DA, Stoof R, Fellermann H, Zuliani P, Tas H, Goñi-Moreno A (2019) Pathways to cellular supremacy in biocomputing. Nat Commun 10(1):1–11CrossRef
2.
Zurück zum Zitat El Karoui M, Hoyos-Flight M, Fletcher L (2019) Future trends in synthetic biology—a report. Front Bioeng Biotechnol 7:175CrossRef El Karoui M, Hoyos-Flight M, Fletcher L (2019) Future trends in synthetic biology—a report. Front Bioeng Biotechnol 7:175CrossRef
3.
Zurück zum Zitat Jain K (2013) Synthetic biology and personalized medicine. Med Princ Pract 22(3):209–219CrossRef Jain K (2013) Synthetic biology and personalized medicine. Med Princ Pract 22(3):209–219CrossRef
4.
Zurück zum Zitat Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2016) Synthetic and systems biology for microbial production of commodity chemicals. npj Syst Biol Appl 2(1):1–11CrossRef Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2016) Synthetic and systems biology for microbial production of commodity chemicals. npj Syst Biol Appl 2(1):1–11CrossRef
5.
Zurück zum Zitat Breitling R, Takano E (2015) Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 35:46–51CrossRef Breitling R, Takano E (2015) Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 35:46–51CrossRef
6.
Zurück zum Zitat Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11(1):185CrossRef Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P (2018) Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels 11(1):185CrossRef
7.
Zurück zum Zitat Narnoliya LK, Jadaun JS, Singh SP (2018) Management of agro-industrial wastes with the aid of synthetic biology. In: Varjani S, Parameswaran B, Kumar S, Khare S (eds) Biosynthetic technology and environmental challenges. Springer, Berlin, pp 11–28CrossRef Narnoliya LK, Jadaun JS, Singh SP (2018) Management of agro-industrial wastes with the aid of synthetic biology. In: Varjani S, Parameswaran B, Kumar S, Khare S (eds) Biosynthetic technology and environmental challenges. Springer, Berlin, pp 11–28CrossRef
8.
Zurück zum Zitat Toda S, Brunger JM, Lim WA (2019) Synthetic development: learning to program multicellular self-organization. Curr Opin Syst Biol 14:41–49CrossRef Toda S, Brunger JM, Lim WA (2019) Synthetic development: learning to program multicellular self-organization. Curr Opin Syst Biol 14:41–49CrossRef
9.
Zurück zum Zitat Hicks M, Bachmann TT, Wang B (2020) Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21(2):132–144CrossRef Hicks M, Bachmann TT, Wang B (2020) Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21(2):132–144CrossRef
10.
Zurück zum Zitat Weiss R, Homsy GE, Knight TF (2002) Toward in vivo digital circuits. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, pp 275–295CrossRef Weiss R, Homsy GE, Knight TF (2002) Toward in vivo digital circuits. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, pp 275–295CrossRef
11.
Zurück zum Zitat Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2(1):1–9CrossRef Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2(1):1–9CrossRef
12.
Zurück zum Zitat Burrill D, Silver P (2010) Making cellular memories. Cell 140(1):13–18CrossRef Burrill D, Silver P (2010) Making cellular memories. Cell 140(1):13–18CrossRef
13.
Zurück zum Zitat Burrill D, Inniss M, Boyle P, Silver P (2012) Synthetic memory circuits for tracking human cell fate. Genes Dev 26(13):1486–1497CrossRef Burrill D, Inniss M, Boyle P, Silver P (2012) Synthetic memory circuits for tracking human cell fate. Genes Dev 26(13):1486–1497CrossRef
14.
Zurück zum Zitat Inniss M, Silver P (2013) Building synthetic memory. Curr Biol 23(17):R812–R816CrossRef Inniss M, Silver P (2013) Building synthetic memory. Curr Biol 23(17):R812–R816CrossRef
15.
Zurück zum Zitat Sonnen KF, Aulehla A (2014) Dynamic signal encoding—from cells to organisms. In: Gallouzi IE, Aulehla A, Woolner S (eds) Seminars in cell & developmental biology, vol 34. Elsevier, Amsterdam, pp 91–98 Sonnen KF, Aulehla A (2014) Dynamic signal encoding—from cells to organisms. In: Gallouzi IE, Aulehla A, Woolner S (eds) Seminars in cell & developmental biology, vol 34. Elsevier, Amsterdam, pp 91–98
16.
Zurück zum Zitat Chuang CH, Lin CL (2014) Synthesizing genetic sequential logic circuit with clock pulse generator. BMC Syst Biol 8(1):63CrossRef Chuang CH, Lin CL (2014) Synthesizing genetic sequential logic circuit with clock pulse generator. BMC Syst Biol 8(1):63CrossRef
17.
Zurück zum Zitat Magdevska L, Pušnik Ž, Mraz M, Zimic N, Moškon M (2017) Computational design of synchronous sequential structures in biological systems. J Comput Sci 18:24–31MathSciNetCrossRef Magdevska L, Pušnik Ž, Mraz M, Zimic N, Moškon M (2017) Computational design of synchronous sequential structures in biological systems. J Comput Sci 18:24–31MathSciNetCrossRef
18.
Zurück zum Zitat Kwok R (2010) Five hard truths for synthetic biology: can engineering approaches tame the complexity of living systems? Roberta Kwok explores five challenges for the field and how they might be resolved. Nature 463(7279):288–291CrossRef Kwok R (2010) Five hard truths for synthetic biology: can engineering approaches tame the complexity of living systems? Roberta Kwok explores five challenges for the field and how they might be resolved. Nature 463(7279):288–291CrossRef
19.
Zurück zum Zitat Goñi-Moreno A, Amos M, de la Cruz F (2013) Multicellular computing using conjugation for wiring. PLoS One 8(6):e65986CrossRef Goñi-Moreno A, Amos M, de la Cruz F (2013) Multicellular computing using conjugation for wiring. PLoS One 8(6):e65986CrossRef
20.
Zurück zum Zitat Macía J, Posas F, Solé RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30(6):342–349CrossRef Macía J, Posas F, Solé RV (2012) Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 30(6):342–349CrossRef
21.
Zurück zum Zitat Zhang C, Tsoi R, You L (2016) Addressing biological uncertainties in engineering gene circuits. Integr Biol 8(4):456–464CrossRef Zhang C, Tsoi R, You L (2016) Addressing biological uncertainties in engineering gene circuits. Integr Biol 8(4):456–464CrossRef
22.
Zurück zum Zitat Liu Q, Schumacher J, Wan X, Lou C, Wang B (2017) Orthogonality and burdens of heterologous AND gate gene circuits in E. coli. ACS Synth Biol 7(2):553–564CrossRef Liu Q, Schumacher J, Wan X, Lou C, Wang B (2017) Orthogonality and burdens of heterologous AND gate gene circuits in E. coli. ACS Synth Biol 7(2):553–564CrossRef
23.
Zurück zum Zitat Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D, Kuo CC, Guo X, Sharma S, Tung A et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15(8):611CrossRef Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D, Milanova D, Kuo CC, Guo X, Sharma S, Tung A et al (2018) An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat Methods 15(8):611CrossRef
24.
Zurück zum Zitat Kim J, Zhou Y, Carlson PD, Teichmann M, Chaudhary S, Simmel FC, Silver PA, Collins JJ, Lucks JB, Yin P et al (2019) De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat Chem Biol 15:1173–1182CrossRef Kim J, Zhou Y, Carlson PD, Teichmann M, Chaudhary S, Simmel FC, Silver PA, Collins JJ, Lucks JB, Yin P et al (2019) De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nat Chem Biol 15:1173–1182CrossRef
25.
Zurück zum Zitat Gräwe A, Ranglack J, Weber W, Stein V (2020) Engineering artificial signalling functions with proteases. Curr Opin Biotechnol 63:1–7CrossRef Gräwe A, Ranglack J, Weber W, Stein V (2020) Engineering artificial signalling functions with proteases. Curr Opin Biotechnol 63:1–7CrossRef
26.
Zurück zum Zitat Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330(6007):1099–1102CrossRef Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010) Interdependence of cell growth and gene expression: origins and consequences. Science 330(6007):1099–1102CrossRef
27.
Zurück zum Zitat Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664CrossRef Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MA (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664CrossRef
28.
Zurück zum Zitat Nikolados EM, Weiße AY, Ceroni F, Oyarzún DA (2019) Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol 8(6):1231–1240CrossRef Nikolados EM, Weiße AY, Ceroni F, Oyarzún DA (2019) Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol 8(6):1231–1240CrossRef
29.
Zurück zum Zitat Tsoi R, Wu F, Zhang C, Bewick S, Karig D, You L (2018) Metabolic division of labor in microbial systems. Proc Natl Acad Sci USA 115(10):2526–2531CrossRef Tsoi R, Wu F, Zhang C, Bewick S, Karig D, You L (2018) Metabolic division of labor in microbial systems. Proc Natl Acad Sci USA 115(10):2526–2531CrossRef
30.
Zurück zum Zitat Pai A, Tanouchi Y, Collins CH, You L (2009) Engineering multicellular systems by cell–cell communication. Curr Opin Biotechnol 20(4):461–470CrossRef Pai A, Tanouchi Y, Collins CH, You L (2009) Engineering multicellular systems by cell–cell communication. Curr Opin Biotechnol 20(4):461–470CrossRef
31.
Zurück zum Zitat Kong W, Celik V, Liao C, Hua Q, Lu T (2014) Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour Bioprocess 1(1):24CrossRef Kong W, Celik V, Liao C, Hua Q, Lu T (2014) Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour Bioprocess 1(1):24CrossRef
32.
Zurück zum Zitat Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489CrossRef Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26(9):483–489CrossRef
33.
Zurück zum Zitat Sadeghpour M, Veliz-Cuba A, Orosz G, Josić K, Bennett MR (2017) Bistability and oscillations in co-repressive synthetic microbial consortia. Quant Biol 5(1):55–66CrossRef Sadeghpour M, Veliz-Cuba A, Orosz G, Josić K, Bennett MR (2017) Bistability and oscillations in co-repressive synthetic microbial consortia. Quant Biol 5(1):55–66CrossRef
34.
Zurück zum Zitat Urrios A, Gonzalez-Flo E, Canadell D, De Nadal E, Macía J, Posas F (2018) Plug-and-play multicellular circuits with time-dependent dynamic responses. ACS Synth Biol 7(4):1095–1104CrossRef Urrios A, Gonzalez-Flo E, Canadell D, De Nadal E, Macía J, Posas F (2018) Plug-and-play multicellular circuits with time-dependent dynamic responses. ACS Synth Biol 7(4):1095–1104CrossRef
35.
Zurück zum Zitat Tanouchi Y, Tu D, Kim J, You L (2008) Noise reduction by diffusional dissipation in a minimal quorum sensing motif. PLoS Comput Biol 4(8):e1000167CrossRef Tanouchi Y, Tu D, Kim J, You L (2008) Noise reduction by diffusional dissipation in a minimal quorum sensing motif. PLoS Comput Biol 4(8):e1000167CrossRef
36.
Zurück zum Zitat Koseska A, Zaikin A, Kurths J, García-Ojalvo J (2009) Timing cellular decision making under noise via cell–cell communication. PLoS One 4(3):e4872CrossRef Koseska A, Zaikin A, Kurths J, García-Ojalvo J (2009) Timing cellular decision making under noise via cell–cell communication. PLoS One 4(3):e4872CrossRef
37.
Zurück zum Zitat Macía J, Manzoni R, Conde N, Urrios A, de Nadal E, Solé R, Posas F (2016) Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput Biol 12(2):1–24CrossRef Macía J, Manzoni R, Conde N, Urrios A, de Nadal E, Solé R, Posas F (2016) Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput Biol 12(2):1–24CrossRef
38.
Zurück zum Zitat Amos M, Goñi-Moreno A (2018) Cellular computing and synthetic biology. In: Stepney S, Rasmussen S, Amos M (eds) Computational matter, no. 2012 in natural computing series. Springer, Berlin, pp 93–110 Amos M, Goñi-Moreno A (2018) Cellular computing and synthetic biology. In: Stepney S, Rasmussen S, Amos M (eds) Computational matter, no. 2012 in natural computing series. Springer, Berlin, pp 93–110
39.
Zurück zum Zitat Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRef Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRef
40.
Zurück zum Zitat Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342CrossRef Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342CrossRef
41.
Zurück zum Zitat Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–22CrossRef Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–22CrossRef
42.
Zurück zum Zitat Amos M (2014) Population-based microbial computing: a third wave of synthetic biology? Int J Gen Syst 43(7):770–782CrossRef Amos M (2014) Population-based microbial computing: a third wave of synthetic biology? Int J Gen Syst 43(7):770–782CrossRef
43.
Zurück zum Zitat Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390CrossRef Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390CrossRef
44.
Zurück zum Zitat Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367CrossRef Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367CrossRef
45.
Zurück zum Zitat Müller S, Hofbauer J, Endler L, Flamm C, Widder S, Schuster P (2006) A generalized model of the repressilator. J Math Biol 53(6):905–937MathSciNetMATHCrossRef Müller S, Hofbauer J, Endler L, Flamm C, Widder S, Schuster P (2006) A generalized model of the repressilator. J Math Biol 53(6):905–937MathSciNetMATHCrossRef
46.
Zurück zum Zitat Buse O, Pérez R, Kuznetsov A (2010) Dynamical properties of the repressilator model. Phys Rev E 81(6):066206MathSciNetCrossRef Buse O, Pérez R, Kuznetsov A (2010) Dynamical properties of the repressilator model. Phys Rev E 81(6):066206MathSciNetCrossRef
47.
Zurück zum Zitat Strelkowa N, Barahona M (2010) Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface 7(48):1071–1082CrossRef Strelkowa N, Barahona M (2010) Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface 7(48):1071–1082CrossRef
48.
Zurück zum Zitat Purcell O, Savery NJ, Grierson CS, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7(52):1503–1524CrossRef Purcell O, Savery NJ, Grierson CS, di Bernardo M (2010) A comparative analysis of synthetic genetic oscillators. J R Soc Interface 7(52):1503–1524CrossRef
49.
Zurück zum Zitat Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626):514–517CrossRef Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626):514–517CrossRef
50.
Zurück zum Zitat Pett JP, Korenčič A, Wesener F, Kramer A, Herzel H (2016) Feedback loops of the mammalian circadian clock constitute repressilator. PLoS Comput Biol 12(12):e1005266CrossRef Pett JP, Korenčič A, Wesener F, Kramer A, Herzel H (2016) Feedback loops of the mammalian circadian clock constitute repressilator. PLoS Comput Biol 12(12):e1005266CrossRef
51.
Zurück zum Zitat Shopera T, Henson WR, Ng A, Lee YJ, Ng K, Moon TS (2015) Robust, tunable genetic memory from protein sequestration combined with positive feedback. Nucleic Acids Res 43(18):9086–9094CrossRef Shopera T, Henson WR, Ng A, Lee YJ, Ng K, Moon TS (2015) Robust, tunable genetic memory from protein sequestration combined with positive feedback. Nucleic Acids Res 43(18):9086–9094CrossRef
52.
Zurück zum Zitat Andrews LB, Nielsen AAK, Voigt CA (2018) Cellular checkpoint control using programmable sequential logic. Science 361(6408):eaap8987CrossRef Andrews LB, Nielsen AAK, Voigt CA (2018) Cellular checkpoint control using programmable sequential logic. Science 361(6408):eaap8987CrossRef
53.
Zurück zum Zitat Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978CrossRef Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6(40):959–978CrossRef
54.
Zurück zum Zitat Perez-Carrasco R, Barnes CP, Schaerli Y, Isalan M, Briscoe J, Page KM (2018) Combining a toggle switch and a repressilator within the AC–DC circuit generates distinct dynamical behaviors. Cell Syst 6(4):521–530CrossRef Perez-Carrasco R, Barnes CP, Schaerli Y, Isalan M, Briscoe J, Page KM (2018) Combining a toggle switch and a repressilator within the AC–DC circuit generates distinct dynamical behaviors. Cell Syst 6(4):521–530CrossRef
55.
Zurück zum Zitat Wang YH, Wei KY, Smolke CD (2013) Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4:69–102CrossRef Wang YH, Wei KY, Smolke CD (2013) Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4:69–102CrossRef
56.
Zurück zum Zitat Singh V (2014) Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst Synth Biol 8(4):271–282CrossRef Singh V (2014) Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst Synth Biol 8(4):271–282CrossRef
57.
Zurück zum Zitat Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BI, Dods G, Liao H et al (2020) De novo design of protein logic gates. Science 368(6486):78–84CrossRef Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BI, Dods G, Liao H et al (2020) De novo design of protein logic gates. Science 368(6486):78–84CrossRef
58.
Zurück zum Zitat Fink T, Lonzarić J, Praznik A, Plaper T, Merljak E, Leben K, Jerala N, Lebar T, Strmšek Ž, Lapenta F et al (2019) Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat Chem Biol 15(2):115CrossRef Fink T, Lonzarić J, Praznik A, Plaper T, Merljak E, Leben K, Jerala N, Lebar T, Strmšek Ž, Lapenta F et al (2019) Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat Chem Biol 15(2):115CrossRef
59.
Zurück zum Zitat Gao XJ, Chong LS, Kim MS, Elowitz MB (2018) Programmable protein circuits in living cells. Science 361(6408):1252–1258CrossRef Gao XJ, Chong LS, Kim MS, Elowitz MB (2018) Programmable protein circuits in living cells. Science 361(6408):1252–1258CrossRef
60.
Zurück zum Zitat Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W et al (2019) Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun 10(1):1–12CrossRef Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W et al (2019) Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun 10(1):1–12CrossRef
61.
Zurück zum Zitat McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197CrossRef McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197CrossRef
62.
Zurück zum Zitat Regot S, MacIa J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, De Nadal E, Posas F, Solé R (2011) Distributed biological computation with multicellular engineered networks. Nature 469(7329):207–211CrossRef Regot S, MacIa J, Conde N, Furukawa K, Kjellén J, Peeters T, Hohmann S, De Nadal E, Posas F, Solé R (2011) Distributed biological computation with multicellular engineered networks. Nature 469(7329):207–211CrossRef
63.
Zurück zum Zitat Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330CrossRef Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330CrossRef
64.
Zurück zum Zitat Verma SC, Miyashiro T (2013) Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci 14(8):16386–16401CrossRef Verma SC, Miyashiro T (2013) Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci 14(8):16386–16401CrossRef
65.
Zurück zum Zitat Grant PK, Dalchau N, Brown JR, Federici F, Rudge TJ, Yordanov B, Patange O, Phillips A, Haseloff J (2016) Orthogonal intercellular signaling for programmed spatial behavior. Mol Syst Biol 12(1):849CrossRef Grant PK, Dalchau N, Brown JR, Federici F, Rudge TJ, Yordanov B, Patange O, Phillips A, Haseloff J (2016) Orthogonal intercellular signaling for programmed spatial behavior. Mol Syst Biol 12(1):849CrossRef
66.
Zurück zum Zitat Marchand N, Collins CH (2013) Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnol Bioeng 110(11):3003–3012CrossRef Marchand N, Collins CH (2013) Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnol Bioeng 110(11):3003–3012CrossRef
67.
Zurück zum Zitat Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5(9):969–977CrossRef Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5(9):969–977CrossRef
69.
Zurück zum Zitat Ortiz ME, Endy D (2012) Engineered cell–cell communication via DNA messaging. J Biol Eng 6:16CrossRef Ortiz ME, Endy D (2012) Engineered cell–cell communication via DNA messaging. J Biol Eng 6:16CrossRef
70.
Zurück zum Zitat Gutiérrez M, Ortiz Y, Carrión J (2020) A framework for implementing metaheuristic algorithms using intercellular communication. Arxiv pp 1–34 Gutiérrez M, Ortiz Y, Carrión J (2020) A framework for implementing metaheuristic algorithms using intercellular communication. Arxiv pp 1–34
71.
Zurück zum Zitat Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340(6132):599–603CrossRef Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340(6132):599–603CrossRef
72.
Zurück zum Zitat Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989CrossRef Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989CrossRef
73.
Zurück zum Zitat Urrios A, Macía J, Manzoni R, Conde N, Bonforti A, De Nadal E, Posas F, Solé R (2016) A synthetic multicellular memory device. ACS Synth Biol 5(8):862–873CrossRef Urrios A, Macía J, Manzoni R, Conde N, Bonforti A, De Nadal E, Posas F, Solé R (2016) A synthetic multicellular memory device. ACS Synth Biol 5(8):862–873CrossRef
74.
Zurück zum Zitat Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134CrossRef Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134CrossRef
75.
Zurück zum Zitat Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137(7):1272–1281CrossRef Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, Voigt CA, Ellington AD (2009) A synthetic genetic edge detection program. Cell 137(7):1272–1281CrossRef
76.
Zurück zum Zitat Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44):17300–17304CrossRef Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 104(44):17300–17304CrossRef
77.
Zurück zum Zitat Garcia-Ojalvo J, Elowitz MB, Strogatz SH (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci USA 101(30):10955–10960MathSciNetMATHCrossRef Garcia-Ojalvo J, Elowitz MB, Strogatz SH (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci USA 101(30):10955–10960MathSciNetMATHCrossRef
78.
Zurück zum Zitat Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329):212–215CrossRef Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329):212–215CrossRef
79.
Zurück zum Zitat Sardanyés J, Bonforti A, Conde N, Solé R, Macía J (2015) Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front Physiol 6:281CrossRef Sardanyés J, Bonforti A, Conde N, Solé R, Macía J (2015) Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front Physiol 6:281CrossRef
80.
Zurück zum Zitat Macía J, Vidiella B, Solé RV (2017) Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 14(129):20170158CrossRef Macía J, Vidiella B, Solé RV (2017) Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 14(129):20170158CrossRef
81.
Zurück zum Zitat Gonzalez-Flo E, Alaball Pujol ME, Macía J (2020) Two-component biosensors: unveiling the mechanisms of predictable tunability. ACS Synth Biol 9(6):1328–1335CrossRef Gonzalez-Flo E, Alaball Pujol ME, Macía J (2020) Two-component biosensors: unveiling the mechanisms of predictable tunability. ACS Synth Biol 9(6):1328–1335CrossRef
82.
Zurück zum Zitat de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103MathSciNetCrossRef de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103MathSciNetCrossRef
83.
Zurück zum Zitat Kaveh A, Koohestani K (2008) Graph products for configuration processing of space structures. Comput Struct 86(11–12):1219–1231CrossRef Kaveh A, Koohestani K (2008) Graph products for configuration processing of space structures. Comput Struct 86(11–12):1219–1231CrossRef
84.
Zurück zum Zitat Le Novere N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158CrossRef Le Novere N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158CrossRef
85.
Zurück zum Zitat Widmer LA, Stelling J (2018) Bridging intracellular scales by mechanistic computational models. Curr Opin Biotechnol 52:17–24CrossRef Widmer LA, Stelling J (2018) Bridging intracellular scales by mechanistic computational models. Curr Opin Biotechnol 52:17–24CrossRef
86.
Zurück zum Zitat Kaern M, Blake WJ, Collins J (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5:179–206CrossRef Kaern M, Blake WJ, Collins J (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5:179–206CrossRef
87.
Zurück zum Zitat Nikolaev EV, Sontag ED (2016) Quorum-sensing synchronization of synthetic toggle switches: a design based on monotone dynamical systems theory. PLoS Comput Biol 12(4):e1004881CrossRef Nikolaev EV, Sontag ED (2016) Quorum-sensing synchronization of synthetic toggle switches: a design based on monotone dynamical systems theory. PLoS Comput Biol 12(4):e1004881CrossRef
88.
Zurück zum Zitat Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRef Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361CrossRef
89.
90.
Zurück zum Zitat Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS (2012) Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2(4):487–496CrossRef Maini PK, Woolley TE, Baker RE, Gaffney EA, Lee SS (2012) Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2(4):487–496CrossRef
91.
Zurück zum Zitat Gomez MM, Arcak M (2017) A tug-of-war mechanism for pattern formation in a genetic network. ACS Synth Biol 6(11):2056–2066CrossRef Gomez MM, Arcak M (2017) A tug-of-war mechanism for pattern formation in a genetic network. ACS Synth Biol 6(11):2056–2066CrossRef
92.
Zurück zum Zitat Macnamara CK, Chaplain MA (2016) Diffusion driven oscillations in gene regulatory networks. J Theor Biol 407:51–70MathSciNetCrossRef Macnamara CK, Chaplain MA (2016) Diffusion driven oscillations in gene regulatory networks. J Theor Biol 407:51–70MathSciNetCrossRef
93.
Zurück zum Zitat Koh W, Blackwell KT (2011) An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping. J Chem Phys 134(15):04B612CrossRef Koh W, Blackwell KT (2011) An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping. J Chem Phys 134(15):04B612CrossRef
94.
Zurück zum Zitat Kim C, Nonaka A, Bell JB, Garcia AL, Donev A (2017) Stochastic simulation of reaction–diffusion systems: a fluctuating-hydrodynamics approach. J Chem Phys 146(12):124110CrossRef Kim C, Nonaka A, Bell JB, Garcia AL, Donev A (2017) Stochastic simulation of reaction–diffusion systems: a fluctuating-hydrodynamics approach. J Chem Phys 146(12):124110CrossRef
95.
Zurück zum Zitat Gorochowski T (2016) Agent-based modelling in synthetic biology. Essays Biochem 60(4):325–336CrossRef Gorochowski T (2016) Agent-based modelling in synthetic biology. Essays Biochem 60(4):325–336CrossRef
96.
Zurück zum Zitat Sklar E (2007) NetLogo, a multi-agent simulation environment. Artif Life 13(3):303–311CrossRef Sklar E (2007) NetLogo, a multi-agent simulation environment. Artif Life 13(3):303–311CrossRef
97.
Zurück zum Zitat North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex adaptive systems modeling with Repast Simphony. Complex Adapt Syst Model 1(1):3CrossRef North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex adaptive systems modeling with Repast Simphony. Complex Adapt Syst Model 1(1):3CrossRef
98.
Zurück zum Zitat Gorochowski TE, Matyjaszkiewicz A, Todd T, Oak N, Kowalska K, Reid S, Tsaneva-Atanasova KT, Savery NJ, Grierson CS, di Bernardo M (2012) BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS One 7(8):e42790CrossRef Gorochowski TE, Matyjaszkiewicz A, Todd T, Oak N, Kowalska K, Reid S, Tsaneva-Atanasova KT, Savery NJ, Grierson CS, di Bernardo M (2012) BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology. PLoS One 7(8):e42790CrossRef
99.
Zurück zum Zitat Matyjaszkiewicz A, Fiore G, Annunziata F, Grierson CS, Savery NJ, Marucci L, di Bernardo M (2017) BSim 2.0: an advanced agent-based cell simulator. ACS Synth Biol 6(10):1969–1972CrossRef Matyjaszkiewicz A, Fiore G, Annunziata F, Grierson CS, Savery NJ, Marucci L, di Bernardo M (2017) BSim 2.0: an advanced agent-based cell simulator. ACS Synth Biol 6(10):1969–1972CrossRef
100.
Zurück zum Zitat Jang SS, Oishi KT, Egbert RG, Klavins E (2012) Specification and simulation of synthetic multicelled behaviors. ACS Synth Biol 1(8):365–374CrossRef Jang SS, Oishi KT, Egbert RG, Klavins E (2012) Specification and simulation of synthetic multicelled behaviors. ACS Synth Biol 1(8):365–374CrossRef
101.
Zurück zum Zitat Oishi K, Klavins E (2014) Framework for engineering finite state machines in gene regulatory networks. ACS Synth Biol 3(9):652–665CrossRef Oishi K, Klavins E (2014) Framework for engineering finite state machines in gene regulatory networks. ACS Synth Biol 3(9):652–665CrossRef
102.
Zurück zum Zitat Gutiérrez M, Gregorio-Godoy P, Perez del Pulgar G, Muñoz LE, Sáez S, Rodríguez-Patón A (2017) A new improved and extended version of the multicell bacterial simulator gro. ACS Synth Biol 6(8):1496–1508CrossRef Gutiérrez M, Gregorio-Godoy P, Perez del Pulgar G, Muñoz LE, Sáez S, Rodríguez-Patón A (2017) A new improved and extended version of the multicell bacterial simulator gro. ACS Synth Biol 6(8):1496–1508CrossRef
103.
Zurück zum Zitat Khan A, Mandal S, Pal RK, Saha G (2016) Construction of gene regulatory networks using recurrent neural networks and swarm intelligence. Scientifica 2016:1060843CrossRef Khan A, Mandal S, Pal RK, Saha G (2016) Construction of gene regulatory networks using recurrent neural networks and swarm intelligence. Scientifica 2016:1060843CrossRef
104.
Zurück zum Zitat Stražar M, Mraz M, Zimic N, Moškon M (2013) An adaptive genetic algorithm for parameter estimation of biological oscillator models to achieve target quantitative system response. Nat Comput 13(1):119–127MathSciNetCrossRef Stražar M, Mraz M, Zimic N, Moškon M (2013) An adaptive genetic algorithm for parameter estimation of biological oscillator models to achieve target quantitative system response. Nat Comput 13(1):119–127MathSciNetCrossRef
105.
Zurück zum Zitat Jana B, Mitra S, Acharyya S (2019) Repository and mutation based particle swarm optimization (RPMSO): a new PSO variant applied to reconstruction of gene regulatory network. Appl Soft Comput 74:330–355CrossRef Jana B, Mitra S, Acharyya S (2019) Repository and mutation based particle swarm optimization (RPMSO): a new PSO variant applied to reconstruction of gene regulatory network. Appl Soft Comput 74:330–355CrossRef
106.
Zurück zum Zitat Chen Y, Yan J, Feng J, Sareh P (2021) PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. J Mech Des 143(1):011703CrossRef Chen Y, Yan J, Feng J, Sareh P (2021) PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. J Mech Des 143(1):011703CrossRef
107.
Zurück zum Zitat Chen Y, Yan J, Sareh P, Feng J (2020) Feasible prestress modes for cable-strut structures with multiple self-stress states using particle swarm optimization. J Comput Civ Eng 34(3):04020003CrossRef Chen Y, Yan J, Sareh P, Feng J (2020) Feasible prestress modes for cable-strut structures with multiple self-stress states using particle swarm optimization. J Comput Civ Eng 34(3):04020003CrossRef
108.
Zurück zum Zitat Hafner M, Koeppl H, Hasler M, Wagner A (2009) “Glocal” robustness analysis and model discrimination for circadian oscillators. PLoS Comput Biol 5(10):e1000534 Hafner M, Koeppl H, Hasler M, Wagner A (2009) “Glocal” robustness analysis and model discrimination for circadian oscillators. PLoS Comput Biol 5(10):e1000534
109.
Zurück zum Zitat Pušnik Ž, Mraz M, Zimic N, Moškon M (2019) Computational analysis of viable parameter regions in models of synthetic biological systems. J Biol Eng 13(1):75CrossRef Pušnik Ž, Mraz M, Zimic N, Moškon M (2019) Computational analysis of viable parameter regions in models of synthetic biological systems. J Biol Eng 13(1):75CrossRef
110.
Zurück zum Zitat Schillings C, Sunnåker M, Stelling J, Schwab C (2015) Efficient characterization of parametric uncertainty of complex (bio) chemical networks. PLoS Comput Biol 11(8):e1004457CrossRef Schillings C, Sunnåker M, Stelling J, Schwab C (2015) Efficient characterization of parametric uncertainty of complex (bio) chemical networks. PLoS Comput Biol 11(8):e1004457CrossRef
111.
Zurück zum Zitat Ji W, Shi H, Zhang H, Sun R, Xi J, Wen D, Feng J, Chen Y, Qin X, Ma Y, Luo W, Deng L, Lin H, Yu R, Ouyang Q (2013) A formalized design process for bacterial consortia that perform logic computing. PLoS One 8(2):e57482CrossRef Ji W, Shi H, Zhang H, Sun R, Xi J, Wen D, Feng J, Chen Y, Qin X, Ma Y, Luo W, Deng L, Lin H, Yu R, Ouyang Q (2013) A formalized design process for bacterial consortia that perform logic computing. PLoS One 8(2):e57482CrossRef
112.
Zurück zum Zitat Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J R Soc Interface 6(Suppl 4):S437–S50 Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J R Soc Interface 6(Suppl 4):S437–S50
113.
Zurück zum Zitat Macía J, Solé R (2014) How to make a synthetic multicellular computer. PLoS One 9(2):e81248CrossRef Macía J, Solé R (2014) How to make a synthetic multicellular computer. PLoS One 9(2):e81248CrossRef
114.
Zurück zum Zitat Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgeMATH Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgeMATH
115.
Zurück zum Zitat de Lorenzo V (2011) Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs 2(1):3–7MathSciNetCrossRef de Lorenzo V (2011) Beware of metaphors: chasses and orthogonality in synthetic biology. Bioeng Bugs 2(1):3–7MathSciNetCrossRef
116.
Zurück zum Zitat Arkin AP (2013) A wise consistency: engineering biology for conformity, reliability, predictability. Curr Opin Chem Biol 17(6):893–901CrossRef Arkin AP (2013) A wise consistency: engineering biology for conformity, reliability, predictability. Curr Opin Chem Biol 17(6):893–901CrossRef
117.
Zurück zum Zitat Decoene T, De Paepe B, Maertens J, Coussement P, Peters G, De Maeseneire SL, De Mey M (2018) Standardization in synthetic biology: an engineering discipline coming of age. Crit Rev Biotechnol 38(5):647–656CrossRef Decoene T, De Paepe B, Maertens J, Coussement P, Peters G, De Maeseneire SL, De Mey M (2018) Standardization in synthetic biology: an engineering discipline coming of age. Crit Rev Biotechnol 38(5):647–656CrossRef
118.
Zurück zum Zitat Vilanova C, Porcar M (2014) iGEM 2.0—refoundations for engineering biology. Nat Biotechnol 32(5):420–424CrossRef Vilanova C, Porcar M (2014) iGEM 2.0—refoundations for engineering biology. Nat Biotechnol 32(5):420–424CrossRef
119.
Zurück zum Zitat Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC et al (2014) The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32(6):545–550CrossRef Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC et al (2014) The synthetic biology open language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32(6):545–550CrossRef
120.
Zurück zum Zitat Beal J, Nguyen T, Gorochowski TE, Goñi-Moreno A, Scott-Brown J, McLaughlin JA, Madsen C, Aleritsch B, Bartley B, Bhakta S et al (2019) Communicating structure and function in synthetic biology diagrams. ACS Synth Biol 8(8):1818–1825CrossRef Beal J, Nguyen T, Gorochowski TE, Goñi-Moreno A, Scott-Brown J, McLaughlin JA, Madsen C, Aleritsch B, Bartley B, Bhakta S et al (2019) Communicating structure and function in synthetic biology diagrams. ACS Synth Biol 8(8):1818–1825CrossRef
121.
Zurück zum Zitat Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741CrossRef Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741CrossRef
122.
Zurück zum Zitat Sarpeshkar R (2014) Analog synthetic biology. Philos Trans R Soc A 372(2012):20130110CrossRef Sarpeshkar R (2014) Analog synthetic biology. Philos Trans R Soc A 372(2012):20130110CrossRef
123.
Zurück zum Zitat Song T, Garg S, Mokhtar R, Bui H, Reif J (2016) Analog computation by DNA strand displacement circuits. ACS Synth Biol 5(8):898–912CrossRef Song T, Garg S, Mokhtar R, Bui H, Reif J (2016) Analog computation by DNA strand displacement circuits. ACS Synth Biol 5(8):898–912CrossRef
124.
Zurück zum Zitat Teo JJ, Woo SS, Sarpeshkar R (2015) Synthetic biology: a unifying view and review using analog circuits. IEEE Trans Biomed Circuits Syst 9(4):453–474CrossRef Teo JJ, Woo SS, Sarpeshkar R (2015) Synthetic biology: a unifying view and review using analog circuits. IEEE Trans Biomed Circuits Syst 9(4):453–474CrossRef
125.
Zurück zum Zitat Kendon V, Sebald A, Stepney S (2015) Heterotic computing: past, present and future. Philos Trans A Math Phys Eng Sci 373(2046):20140225 Kendon V, Sebald A, Stepney S (2015) Heterotic computing: past, present and future. Philos Trans A Math Phys Eng Sci 373(2046):20140225
126.
Zurück zum Zitat Goni-Moreno A, Nikel PI (2019) High-performance biocomputing in synthetic biology-integrated transcriptional and metabolic circuits. Front Bioeng Biotechnol 7:40CrossRef Goni-Moreno A, Nikel PI (2019) High-performance biocomputing in synthetic biology-integrated transcriptional and metabolic circuits. Front Bioeng Biotechnol 7:40CrossRef
127.
Zurück zum Zitat Kaveh A (2013) Optimal analysis of structures by concepts of symmetry and regularity. Springer, BerlinMATHCrossRef Kaveh A (2013) Optimal analysis of structures by concepts of symmetry and regularity. Springer, BerlinMATHCrossRef
128.
Zurück zum Zitat Pandi A, Koch M, Voyvodic PL, Soudier P, Bonnet J, Kushwaha M, Faulon JL (2019) Metabolic perceptrons for neural computing in biological systems. Nat Commun 10(1):1–13CrossRef Pandi A, Koch M, Voyvodic PL, Soudier P, Bonnet J, Kushwaha M, Faulon JL (2019) Metabolic perceptrons for neural computing in biological systems. Nat Commun 10(1):1–13CrossRef
129.
Zurück zum Zitat Huang S (2019) Towards multicellular biological deep neural nets based on transcriptional regulation. Arxiv Huang S (2019) Towards multicellular biological deep neural nets based on transcriptional regulation. Arxiv
130.
Zurück zum Zitat Sarkar K, Bonnerjee D, Bagh S (2020) A single layer artificial neural network with engineered bacteria. Arxiv Sarkar K, Bonnerjee D, Bagh S (2020) A single layer artificial neural network with engineered bacteria. Arxiv
131.
Zurück zum Zitat Li X, Rizik L, Daniel R (2020) Synthetic neural-like computing in microbial consortia for pattern recognition. Biorxiv Li X, Rizik L, Daniel R (2020) Synthetic neural-like computing in microbial consortia for pattern recognition. Biorxiv
132.
Zurück zum Zitat Karig D, Martini KM, Lu T, DeLateur NA, Goldenfeld N, Weiss R (2018) Stochastic Turing patterns in a synthetic bacterial population. Proc Natl Acad Sci USA 115(26):6572–6577CrossRef Karig D, Martini KM, Lu T, DeLateur NA, Goldenfeld N, Weiss R (2018) Stochastic Turing patterns in a synthetic bacterial population. Proc Natl Acad Sci USA 115(26):6572–6577CrossRef
133.
Zurück zum Zitat Sekine R, Shibata T, Ebisuya M (2018) Synthetic mammalian pattern formation driven by differential diffusivity of nodal and lefty. Nat Commun 9(1):1–11CrossRef Sekine R, Shibata T, Ebisuya M (2018) Synthetic mammalian pattern formation driven by differential diffusivity of nodal and lefty. Nat Commun 9(1):1–11CrossRef
134.
Zurück zum Zitat Nebreda SD, Pla J, Rocamora BV, Pinero J, Conde N, Sole R (2020) Synthetic Turing patterns in engineered microbial consortia. Biorxiv Nebreda SD, Pla J, Rocamora BV, Pinero J, Conde N, Sole R (2020) Synthetic Turing patterns in engineered microbial consortia. Biorxiv
135.
Zurück zum Zitat Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620MathSciNetMATHCrossRef Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620MathSciNetMATHCrossRef
137.
Zurück zum Zitat Buscarino A, Corradino C, Fortuna L, Frasca M, Chua LO (2016) Turing patterns in memristive cellular nonlinear networks. IEEE Trans Circuits Syst I Regul Pap 63(8):1222–1230MathSciNetMATHCrossRef Buscarino A, Corradino C, Fortuna L, Frasca M, Chua LO (2016) Turing patterns in memristive cellular nonlinear networks. IEEE Trans Circuits Syst I Regul Pap 63(8):1222–1230MathSciNetMATHCrossRef
138.
Zurück zum Zitat Bucolo M, Buscarino A, Corradino C, Fortuna L, Frasca M (2019) Turing patterns in the simplest MCNN. Nonlinear Theory Appl 10(4):390–398 Bucolo M, Buscarino A, Corradino C, Fortuna L, Frasca M (2019) Turing patterns in the simplest MCNN. Nonlinear Theory Appl 10(4):390–398
139.
140.
Zurück zum Zitat Beal J, Weiss R, Densmore D, Adler A, Appleton E, Babb J, Bhatia S, Davidsohn N, Haddock T, Loyall J, Schantz R, Vasilev V (2012) An end-to-end work flow for engineering of biological networks from high-level specifications. ACS Synth Biol 1(8):317–331CrossRef Beal J, Weiss R, Densmore D, Adler A, Appleton E, Babb J, Bhatia S, Davidsohn N, Haddock T, Loyall J, Schantz R, Vasilev V (2012) An end-to-end work flow for engineering of biological networks from high-level specifications. ACS Synth Biol 1(8):317–331CrossRef
141.
Zurück zum Zitat Lissek T (2017) Interfacing neural network components and nucleic acids. Front Bioeng Biotechnol 5:53CrossRef Lissek T (2017) Interfacing neural network components and nucleic acids. Front Bioeng Biotechnol 5:53CrossRef
Metadaten
Titel
Distributed biological computation: from oscillators, logic gates and switches to a multicellular processor and neural computing applications
verfasst von
Miha Moškon
Roman Komac
Nikolaj Zimic
Miha Mraz
Publikationsdatum
24.01.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 15/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05711-6

Weitere Artikel der Ausgabe 15/2021

Neural Computing and Applications 15/2021 Zur Ausgabe