Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Distributed Renewable Energy Technologies

verfasst von : Henerica Tazvinga, Miriam Thopil, Papy B. Numbi, Temitope Adefarati

Erschienen in: Handbook of Distributed Generation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Distributed renewable energy technologies refer to the inclusion of generators onto the existing conventional power system network particularly at points closer to the load. These generators can be powered by various renewable energy sources. Distributed energy technologies are becoming increasingly important in the energy supply systems of many countries. Renewable distributed energy incorporates a wide range of renewable technologies including solar power, wind turbines, geothermal, hydro, biogas, energy storage and ocean thermal energy conversion systems. Renewable distributed energy also has the potential to mitigate congestion in transmission lines, reduce the impact of electricity price fluctuations, strengthen energy security and provide greater stability to the electricity grid. In this work, different renewable energy distributed generation technologies are discussed with their advantages and disadvantages. As a stand-alone system, renewable energy-based power plants often require a backup energy generator and a backup energy storage system due to the intermittent and unexpected nature of its availability. The former is utilized to facilitate the provision of electricity when the renewable energy source is not available, and the latter is a means to store excess electricity generated by the renewable energy source. By connecting a renewable energy system to an existing power grid, it is possible to bypass the need of additional components such as generators and battery systems, as the grid now acts as a backup power generator by providing electricity during downtime and by accepting excess electricity generated during surplus availability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adams WG, Day RE (1876) The action of light on selenium. Proc R Soc Lond 25:113–117CrossRef Adams WG, Day RE (1876) The action of light on selenium. Proc R Soc Lond 25:113–117CrossRef
2.
Zurück zum Zitat Siemens W (1885) On the electromotive action of illuminated selenium, discovered by Mr. Fritts, of New York. J Franklin Inst 119(6):IN6–456 Siemens W (1885) On the electromotive action of illuminated selenium, discovered by Mr. Fritts, of New York. J Franklin Inst 119(6):IN6–456
3.
Zurück zum Zitat Ohl R (1946) Light-sensitive electric device. United States Patent Office, New York Ohl R (1946) Light-sensitive electric device. United States Patent Office, New York
4.
Zurück zum Zitat Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677CrossRef Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677CrossRef
5.
Zurück zum Zitat Candelise C, Winskel M, Gross RJK (2013) The dynamics of solar PV costs and prices as a challenge for technology forecasting. Renew Sustain Energy Rev 26:96–107CrossRef Candelise C, Winskel M, Gross RJK (2013) The dynamics of solar PV costs and prices as a challenge for technology forecasting. Renew Sustain Energy Rev 26:96–107CrossRef
6.
Zurück zum Zitat Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34(17):3218–3232CrossRef Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34(17):3218–3232CrossRef
7.
Zurück zum Zitat Balkanski M, Wallis RF (2012) Electronic energy bands: semiconductors. In: Semiconductor physics and applications. Oxford University Press, Oxford, pp 44–72 Balkanski M, Wallis RF (2012) Electronic energy bands: semiconductors. In: Semiconductor physics and applications. Oxford University Press, Oxford, pp 44–72
8.
Zurück zum Zitat Kalogirou SA (2014) Solar energy engineering—processes and systems (2nd edn), Elsevier, Amsterdam Kalogirou SA (2014) Solar energy engineering—processes and systems (2nd edn), Elsevier, Amsterdam
9.
Zurück zum Zitat Labouret A, Villoz M (2010) Solar photovoltaic energy. Institution of Engineering and Technology Labouret A, Villoz M (2010) Solar photovoltaic energy. Institution of Engineering and Technology
10.
Zurück zum Zitat Blazev AS (2012) Crystalline silicon photovoltaic technologies. In: Photovoltaics for commercial and utilities power generation. Fairmont Press, Inc., pp 27–90 Blazev AS (2012) Crystalline silicon photovoltaic technologies. In: Photovoltaics for commercial and utilities power generation. Fairmont Press, Inc., pp 27–90
11.
Zurück zum Zitat Osterwald CR (2003) Testing, monitoring and calibration, In: Practical handbook of photovoltaics—fundamentals and applications. Elsevier, Amsterdam, pp 794–809 Osterwald CR (2003) Testing, monitoring and calibration, In: Practical handbook of photovoltaics—fundamentals and applications. Elsevier, Amsterdam, pp 794–809
12.
Zurück zum Zitat Khaligh A, Onar OC (2011) Energy sources. In: Power electronics handbook—devices, circuits and application. Elsevier, Amsterdam, pp 1289–1324 Khaligh A, Onar OC (2011) Energy sources. In: Power electronics handbook—devices, circuits and application. Elsevier, Amsterdam, pp 1289–1324
13.
Zurück zum Zitat Appelbaum J, Bany J (1979) Shadow effect of adjacent solar collectors in large scale systems. Sol Energy 23:497–507CrossRef Appelbaum J, Bany J (1979) Shadow effect of adjacent solar collectors in large scale systems. Sol Energy 23:497–507CrossRef
14.
Zurück zum Zitat Florensa RS, Cueva RL (2003) Photovoltaic systems: case studies. In: Practical handbook of photovoltaics—fundamentals and applications. Elsevier, Amsterdam, pp 726–747 Florensa RS, Cueva RL (2003) Photovoltaic systems: case studies. In: Practical handbook of photovoltaics—fundamentals and applications. Elsevier, Amsterdam, pp 726–747
15.
Zurück zum Zitat Anaya-Lara O, Jenkins N, Ekanayake J, Cartwright P, Hughes M (2011) Wind energy generation: modelling and control. Wiley, NY Anaya-Lara O, Jenkins N, Ekanayake J, Cartwright P, Hughes M (2011) Wind energy generation: modelling and control. Wiley, NY
16.
Zurück zum Zitat Heier SWR (2006) Grid integration of wind energy conversion systems. Wiley, Chichester Heier SWR (2006) Grid integration of wind energy conversion systems. Wiley, Chichester
17.
Zurück zum Zitat Kayikçi M, Milanović J (2008) Assessing transient response of DFIG-based wind plants—the influence of model simplifications and parameters. IEEE Trans Power Syst 23(2):545–554CrossRef Kayikçi M, Milanović J (2008) Assessing transient response of DFIG-based wind plants—the influence of model simplifications and parameters. IEEE Trans Power Syst 23(2):545–554CrossRef
18.
Zurück zum Zitat Chowdhury B, Chellapilla S (2006) Double-fed induction generator control for variable speed wind power generation. Electr Power Syst Res 76(9):786–800CrossRef Chowdhury B, Chellapilla S (2006) Double-fed induction generator control for variable speed wind power generation. Electr Power Syst Res 76(9):786–800CrossRef
19.
Zurück zum Zitat Petersson A (2005) Analysis, modeling and control of doubly-fed induction generators for wind turbines Petersson A (2005) Analysis, modeling and control of doubly-fed induction generators for wind turbines
20.
Zurück zum Zitat El-Helw H, Tennakoon S (2008) Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms considering the new UK grid code. Renew Energy 33(1):1–12CrossRef El-Helw H, Tennakoon S (2008) Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms considering the new UK grid code. Renew Energy 33(1):1–12CrossRef
21.
Zurück zum Zitat Wei X, QIiu X, Xu J, Li X (2010) Reactive power optimization in smart grid with wind power generator. In: Power and energy engineering conference (APPEEC), Asia-Pacific, 28–31 March 2010 Wei X, QIiu X, Xu J, Li X (2010) Reactive power optimization in smart grid with wind power generator. In: Power and energy engineering conference (APPEEC), Asia-Pacific, 28–31 March 2010
22.
Zurück zum Zitat Li L, Zeng Xiang J, Zhang P (2008) Wind farms reactive power optimization using genetic/tabu hybrid algorithm. In: International conference on intelligent computation technology and automation (ICICTA) Li L, Zeng Xiang J, Zhang P (2008) Wind farms reactive power optimization using genetic/tabu hybrid algorithm. In: International conference on intelligent computation technology and automation (ICICTA)
23.
Zurück zum Zitat Li L, Zeng X, Zhang P, Xia Y, Liu G (2008) Optimization of reactive power compensation in wind farms using sensitivity analysis and tabu algorithm. In: Industry Applications Society annual meeting (IAS’08) Li L, Zeng X, Zhang P, Xia Y, Liu G (2008) Optimization of reactive power compensation in wind farms using sensitivity analysis and tabu algorithm. In: Industry Applications Society annual meeting (IAS’08)
24.
Zurück zum Zitat Zhao J, Li X, Hao J, Zhang C, Lu J (2009) Wind farm reactive power output optimization for loss reduction and voltage profile improvements. In: IEEE 6th international power electronics and motion control conference, 2009, IPEMC’09 Zhao J, Li X, Hao J, Zhang C, Lu J (2009) Wind farm reactive power output optimization for loss reduction and voltage profile improvements. In: IEEE 6th international power electronics and motion control conference, 2009, IPEMC’09
25.
Zurück zum Zitat Konopinski R, Vijayan P, Ajjarapu V (2009) Extended reactive capability of DFIG wind parks for enhanced system performance. IEEE Trans Power Syst 24(3):1346–1355CrossRef Konopinski R, Vijayan P, Ajjarapu V (2009) Extended reactive capability of DFIG wind parks for enhanced system performance. IEEE Trans Power Syst 24(3):1346–1355CrossRef
26.
Zurück zum Zitat Vijayan P (2010) Utilizing reactive capability of doubly fed induction generators to enhance system voltage performance and withstand wind variability Vijayan P (2010) Utilizing reactive capability of doubly fed induction generators to enhance system voltage performance and withstand wind variability
27.
Zurück zum Zitat Erlich I, Wilch M, Feltes C (2007) Reactive power generation by DFIG based wind farms with AC grid connection. In: IEEE European conference on power electronics and applications Erlich I, Wilch M, Feltes C (2007) Reactive power generation by DFIG based wind farms with AC grid connection. In: IEEE European conference on power electronics and applications
28.
Zurück zum Zitat Pappala V, Wilch M, Singh S, Erlich I (2007) Reactive power management in offshore wind farms by adaptive PSO. In: IEEE international conference on intelligent systems applications to power systems Pappala V, Wilch M, Singh S, Erlich I (2007) Reactive power management in offshore wind farms by adaptive PSO. In: IEEE international conference on intelligent systems applications to power systems
29.
Zurück zum Zitat El-Helw H, Tennakoon S (2008) Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms considering the new UK grid code. Renew Energy 33(1):1–12CrossRef El-Helw H, Tennakoon S (2008) Evaluation of the suitability of a fixed speed wind turbine for large scale wind farms considering the new UK grid code. Renew Energy 33(1):1–12CrossRef
30.
Zurück zum Zitat Engelhardt S, Erlich I, Feltes C, Kretschmann J, Shewarega F (2011) Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Trans Energy Convers 26(1):364–372CrossRef Engelhardt S, Erlich I, Feltes C, Kretschmann J, Shewarega F (2011) Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Trans Energy Convers 26(1):364–372CrossRef
31.
Zurück zum Zitat Lai L, Chan T (2008) Distributed generation: induction and permanent magnet generators. Wiley, New York Lai L, Chan T (2008) Distributed generation: induction and permanent magnet generators. Wiley, New York
32.
Zurück zum Zitat Feijoo AE, Cidras J (2000) Modeling of wind farms in the load flow analysis. IEEE Trans Power Syst 15(1):110–115CrossRef Feijoo AE, Cidras J (2000) Modeling of wind farms in the load flow analysis. IEEE Trans Power Syst 15(1):110–115CrossRef
33.
Zurück zum Zitat Mihic S (2004) Biogas fuel for internal combustion engines. Annals of the Faculty of Engineering Hunedoara, Tome II. Fascicole 3, 2004 Mihic S (2004) Biogas fuel for internal combustion engines. Annals of the Faculty of Engineering Hunedoara, Tome II. Fascicole 3, 2004
34.
Zurück zum Zitat Al Seadi T (2008) Biogas handbook, Syddansk Universitet Al Seadi T (2008) Biogas handbook, Syddansk Universitet
35.
Zurück zum Zitat Ni M, Leung D, Leung M, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472CrossRef Ni M, Leung D, Leung M, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87(5):461–472CrossRef
36.
Zurück zum Zitat Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378CrossRef Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378CrossRef
37.
Zurück zum Zitat Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrogen Energy 35(14):7416–7426CrossRef Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrogen Energy 35(14):7416–7426CrossRef
38.
Zurück zum Zitat Demirbaş A (2002) Hydrogen production from biomass by the gasification process. Energy Sources 24(1):59–68CrossRef Demirbaş A (2002) Hydrogen production from biomass by the gasification process. Energy Sources 24(1):59–68CrossRef
39.
Zurück zum Zitat Levin D, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185CrossRef Levin D, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185CrossRef
40.
Zurück zum Zitat Varfolomejeva R, Sauhats A, Umbrasko I, Broka Z (2015) Biogas power plant operation considering limited biofuel resources. In: 2015 IEEE 15th international conference on environment and electrical engineering Varfolomejeva R, Sauhats A, Umbrasko I, Broka Z (2015) Biogas power plant operation considering limited biofuel resources. In: 2015 IEEE 15th international conference on environment and electrical engineering
41.
Zurück zum Zitat Wang J (2014) Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front Energy Res 2:10 Wang J (2014) Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front Energy Res 2:10
42.
Zurück zum Zitat Bond T, Templeton M (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354CrossRef Bond T, Templeton M (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354CrossRef
43.
Zurück zum Zitat Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and applications. Elsevier, Amsterdam Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and applications. Elsevier, Amsterdam
44.
Zurück zum Zitat Gunaseelan V (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1):83–114CrossRef Gunaseelan V (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13(1):83–114CrossRef
45.
Zurück zum Zitat Holm-Nielsen J, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484 Holm-Nielsen J, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484
46.
Zurück zum Zitat Monnet F (2003) An introduction to anaerobic digestion of organic wastes Monnet F (2003) An introduction to anaerobic digestion of organic wastes
47.
Zurück zum Zitat Balussou D, Kleyböcker A, McKenna R, Möst D, Fichtner W (2012) An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz 3(1):23–41CrossRef Balussou D, Kleyböcker A, McKenna R, Möst D, Fichtner W (2012) An economic analysis of three operational co-digestion biogas plants in Germany. Waste Biomass Valoriz 3(1):23–41CrossRef
48.
Zurück zum Zitat GE Agency (2013) Renewable energy solutions for off-grid applications GE Agency (2013) Renewable energy solutions for off-grid applications
50.
Zurück zum Zitat vanVuuren SJ, vanDijk M, Loots I, Barta B, Scharfetter BG (2014) Conduit hydropower development guide. Water Research Commmission, Pretoria vanVuuren SJ, vanDijk M, Loots I, Barta B, Scharfetter BG (2014) Conduit hydropower development guide. Water Research Commmission, Pretoria
51.
Zurück zum Zitat Mishra S, Singal SK, Khatod DK (2012) A review on electromechanical equipment applicable to small hydropower plants. Int J Energy Res 36(5):553–571CrossRef Mishra S, Singal SK, Khatod DK (2012) A review on electromechanical equipment applicable to small hydropower plants. Int J Energy Res 36(5):553–571CrossRef
52.
Zurück zum Zitat Ardizzon G, Cavazzini G, Pavesi G (2014) A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renew Sustain Energy Rev 31:746–761CrossRef Ardizzon G, Cavazzini G, Pavesi G (2014) A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renew Sustain Energy Rev 31:746–761CrossRef
53.
Zurück zum Zitat Ferro LMC, Gato LMC, Falcao AFO (2011) Design of the rotor blades of a mini hydraulic bulb-turbine. Renew Energy 36(9):2395–2403CrossRef Ferro LMC, Gato LMC, Falcao AFO (2011) Design of the rotor blades of a mini hydraulic bulb-turbine. Renew Energy 36(9):2395–2403CrossRef
54.
Zurück zum Zitat Grove WR (1838) On a new voltaic combination. Philos Mag J 13(84):430–431 Grove WR (1838) On a new voltaic combination. Philos Mag J 13(84):430–431
55.
Zurück zum Zitat Schoenbein CF (1839) On the votlaic polarisation of certain solid and fluid substances. Philos Mag J 14(85):43–45 Schoenbein CF (1839) On the votlaic polarisation of certain solid and fluid substances. Philos Mag J 14(85):43–45
56.
Zurück zum Zitat Bills GW (1964) Voltage and current control for spacecraft fuel cell systems. IEEE Trans Aerosp 2(2):478–482CrossRef Bills GW (1964) Voltage and current control for spacecraft fuel cell systems. IEEE Trans Aerosp 2(2):478–482CrossRef
57.
Zurück zum Zitat Barnett BM, Teagen WP (1992) The role of fuel cells in our energy future. J Power Sources 37:15–31CrossRef Barnett BM, Teagen WP (1992) The role of fuel cells in our energy future. J Power Sources 37:15–31CrossRef
58.
Zurück zum Zitat Huang X, Zhang Z, Jiang J (2006) Fuel cell technology for distributed generation: an overview. In: IEEE international symposium on industrial electronics (Volume: 2), Montreal Huang X, Zhang Z, Jiang J (2006) Fuel cell technology for distributed generation: an overview. In: IEEE international symposium on industrial electronics (Volume: 2), Montreal
59.
Zurück zum Zitat Carette L, Friedrich K, Stimming U (2001) Fuel cells- fundamentals and applications. Fuel Cells 1(1):5–39CrossRef Carette L, Friedrich K, Stimming U (2001) Fuel cells- fundamentals and applications. Fuel Cells 1(1):5–39CrossRef
62.
Zurück zum Zitat Tomal MU, Gabbar HA (2015) Key performance assessment of fuel cell based distributed energy generation system in resilient micro energy grid. In: IEEE international conference on smart energy grid engineering, Oshawa Tomal MU, Gabbar HA (2015) Key performance assessment of fuel cell based distributed energy generation system in resilient micro energy grid. In: IEEE international conference on smart energy grid engineering, Oshawa
63.
Zurück zum Zitat Candusso D, Valero L, Walter A, Bacha S (2002) Modelling, control and simulation of a fuel cell based power supply system with energy management. In: IEEE annual conference of the Industrial Engineering Society, Sevilla Candusso D, Valero L, Walter A, Bacha S (2002) Modelling, control and simulation of a fuel cell based power supply system with energy management. In: IEEE annual conference of the Industrial Engineering Society, Sevilla
64.
Zurück zum Zitat REN21, Renewables 2015 global status report, 2015 REN21, Renewables 2015 global status report, 2015
65.
Zurück zum Zitat World Energy Resources (2013) Geothermal World Energy Council 2013 World Energy Resources (2013) Geothermal World Energy Council 2013
66.
Zurück zum Zitat WER Survey (2013) World Energy Council for sustainable energy WER Survey (2013) World Energy Council for sustainable energy
67.
Zurück zum Zitat IEA (2014) Growth in final energy consumption for years 2007 through 2012, Paris IEA (2014) Growth in final energy consumption for years 2007 through 2012, Paris
68.
Zurück zum Zitat Ürge-Vorsatz D, Cabeza L, Serrano S, Barreneche C, Petrichenko K (2015) Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev 41:85–98CrossRef Ürge-Vorsatz D, Cabeza L, Serrano S, Barreneche C, Petrichenko K (2015) Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev 41:85–98CrossRef
69.
Zurück zum Zitat Walwyn D, Brent A (2015) Renewable energy gathers steam in South Africa. Renew Sustain Energy Rev 41:390–401CrossRef Walwyn D, Brent A (2015) Renewable energy gathers steam in South Africa. Renew Sustain Energy Rev 41:390–401CrossRef
70.
Zurück zum Zitat Chowdhury AA, Agarwal SK, Koval D (2013) Reliability modelling of distributed generation in conventional distribution systems planning and analysis. IEEE Trans Ind Appl 39(5):1493–1501CrossRef Chowdhury AA, Agarwal SK, Koval D (2013) Reliability modelling of distributed generation in conventional distribution systems planning and analysis. IEEE Trans Ind Appl 39(5):1493–1501CrossRef
71.
Zurück zum Zitat Gil HA, Joos G (2008) Models for quantifying the economic benefits of distributed generation. IEEE Trans Power Syst 23(2):327–335 Gil HA, Joos G (2008) Models for quantifying the economic benefits of distributed generation. IEEE Trans Power Syst 23(2):327–335
72.
Zurück zum Zitat Barker P, De Mello R (2000) Determining the impact of distributed generation on power systems. I. Radial distribution systems. IEEE Power Eng Soc Summer Meet 3:1645–1656 Barker P, De Mello R (2000) Determining the impact of distributed generation on power systems. I. Radial distribution systems. IEEE Power Eng Soc Summer Meet 3:1645–1656
73.
Zurück zum Zitat Jenkins N, Ekanayake JB, Strbac G (2010) Distributed generation. IET Renew Energy Ser 1, 1:1–20 Jenkins N, Ekanayake JB, Strbac G (2010) Distributed generation. IET Renew Energy Ser 1, 1:1–20
74.
Zurück zum Zitat Hung DQ, Mithulananthan N (2011) Handbook of renewable energy technology: DG allocation in primary distribution systems considering loss reductio. World Scientific Publishers, pp 587–628 Hung DQ, Mithulananthan N (2011) Handbook of renewable energy technology: DG allocation in primary distribution systems considering loss reductio. World Scientific Publishers, pp 587–628
75.
Zurück zum Zitat Strachan N, Farrell A (2006) Emissions from distributed vs. centralized generation: the importance of system performance. Energy Policy 34(17):2677–2689CrossRef Strachan N, Farrell A (2006) Emissions from distributed vs. centralized generation: the importance of system performance. Energy Policy 34(17):2677–2689CrossRef
76.
Zurück zum Zitat Borbely A, Kreider J (2001) Distributed generation: the power paradigm for the new millennium. CRC press, Boca Raton Borbely A, Kreider J (2001) Distributed generation: the power paradigm for the new millennium. CRC press, Boca Raton
77.
Zurück zum Zitat Narbel P, Hansen J, Lien J (2014) Energy technologies and economics. Springer, Berlin Narbel P, Hansen J, Lien J (2014) Energy technologies and economics. Springer, Berlin
78.
Zurück zum Zitat Gupta H, Roy S (2007) Worldwide status of geothermal resource utilization. Geotherm Energy, 199–229 Gupta H, Roy S (2007) Worldwide status of geothermal resource utilization. Geotherm Energy, 199–229
79.
Zurück zum Zitat Kose R (2007) Geothermal energy potential for power generation in Turkey: a case study in Simav, Kutahya. Renew Sustain Energy Rev 11(3):497–511CrossRef Kose R (2007) Geothermal energy potential for power generation in Turkey: a case study in Simav, Kutahya. Renew Sustain Energy Rev 11(3):497–511CrossRef
80.
Zurück zum Zitat Kömürcü M, Akpınar A (2009) Importance of geothermal energy and its environmental effects in Turkey. Renew Energy 34(6):1611–1615CrossRef Kömürcü M, Akpınar A (2009) Importance of geothermal energy and its environmental effects in Turkey. Renew Energy 34(6):1611–1615CrossRef
81.
Zurück zum Zitat Fridleifsson I (2003) Status of geothermal energy amongst the world’s energy sources. Geothermics 32(4):379–388CrossRef Fridleifsson I (2003) Status of geothermal energy amongst the world’s energy sources. Geothermics 32(4):379–388CrossRef
82.
Zurück zum Zitat Lund J, Freeston D, Boyd T (2005) Direct application of geothermal energy: 2005 worldwide review. Geothermics 34(6):691–727CrossRef Lund J, Freeston D, Boyd T (2005) Direct application of geothermal energy: 2005 worldwide review. Geothermics 34(6):691–727CrossRef
83.
Zurück zum Zitat Chamorro C, Mondéjar M, Ramos R, Segovia J, Martín M, Villamañán M (2012) World geothermal power production status: energy, environmental and economic study of high enthalpy technologies. Energy 42(1):10–18CrossRef Chamorro C, Mondéjar M, Ramos R, Segovia J, Martín M, Villamañán M (2012) World geothermal power production status: energy, environmental and economic study of high enthalpy technologies. Energy 42(1):10–18CrossRef
84.
Zurück zum Zitat Glassley W (2014) Geothermal energy: renewable energy and the environment. CRC Press, FloridaCrossRef Glassley W (2014) Geothermal energy: renewable energy and the environment. CRC Press, FloridaCrossRef
85.
Zurück zum Zitat Lund J, Freeston D, Boyd T (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40(3):159–180CrossRef Lund J, Freeston D, Boyd T (2011) Direct utilization of geothermal energy 2010 worldwide review. Geothermics 40(3):159–180CrossRef
87.
Zurück zum Zitat EIA, Climate Registry 2012, EIA 2013e, EPA 2009, EPA 2011, NRC 2010 EIA, Climate Registry 2012, EIA 2013e, EPA 2009, EPA 2011, NRC 2010
88.
Zurück zum Zitat Vega L (1995) Ocean thermal energy conversion, encyclopaedia of energy technology and the environment. Wiley, New York Vega L (1995) Ocean thermal energy conversion, encyclopaedia of energy technology and the environment. Wiley, New York
89.
Zurück zum Zitat Vega LA (2002/2003) Ocean thermal energy conversion primer. PICHTR Honolulu, HI Marine Technol Soc J 6(4):25–35 Vega LA (2002/2003) Ocean thermal energy conversion primer. PICHTR Honolulu, HI Marine Technol Soc J 6(4):25–35
Metadaten
Titel
Distributed Renewable Energy Technologies
verfasst von
Henerica Tazvinga
Miriam Thopil
Papy B. Numbi
Temitope Adefarati
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51343-0_1