Skip to main content

2024 | OriginalPaper | Buchkapitel

Distribution of Arsenic and Iron in Hyporheic Zone Sediments Along the Hooghly River

verfasst von : Thomas S. Varner, Saptarshi Saha, Kyungwon Kwak, Mesbah Uddin Bhuiyan, Harshad V. Kulkarni, Ananya Mukhopadhyay, Peter S. K. Knappett, Saugata Datta

Erschienen in: Advances in River Corridor Research and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Arsenic (As) contamination within the shallow aquifers of the Bengal basin continues to pose a serious health risk to millions of people who rely on the groundwater for drinking purposes. Elevated dissolved As concentrations in the aquifers are attributed to the reductive dissolution of As-bearing Fe-oxides. Within the hyporheic zone (HZ), interactions between oxygen-rich river water and reducing groundwater causes the precipitation of Fe-oxides, which act as a sink of As. Surficial fine sediment has been proposed to limit this reaction. Once formed, the As-bearing Fe-oxides may dissolve under reducing conditions to further contaminate the adjacent aquifer. In this preliminary study, sediments from silt-capped and sandy riverbanks along the Hooghly River (West Bengal, India) were investigated to understand the factors controlling the mobility of As within the HZ. Bulk elemental concentrations were measured by X-Ray Fluorescence and the relative proportion of Fe(III) was estimated by diffuse reflectance spectroscopy. The silt-capped riverbanks had As and Fe concentrations of 3.6 mg/kg and 19.0 g/kg, respectively, which were more closely associated with clay minerals as shown by the ΔR which is a proxy for Fe(III) (ΔR at 520 nm = 0.2). The sands had As and Fe concentrations of 3.6 mg/kg and 12.5 g/kg, respectively, with higher proportions of Fe present as Fe-oxides (ΔR at 520 nm = 0.37). The results indicate that the distribution of As and Fe differs between the sandy and silt-capped riverbanks, indicating that the hydrological and chemical reactions impacting As mobility varies between the riverbanks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banks D, Frengstad B (2006) Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites. Geochim Cosmochim Acta 70(6):1337–1355CrossRef Banks D, Frengstad B (2006) Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites. Geochim Cosmochim Acta 70(6):1337–1355CrossRef
2.
Zurück zum Zitat Berube M, Jewell K, Myers KD, Knappett PS, Shuai P, Hossain A, Lipsi M, Hossain S, Aitkenhead-Peterson J, Ahmed K (2018) The fate of arsenic in groundwater discharged to the Meghna River, Bangladesh. Environ Chem 15:29CrossRef Berube M, Jewell K, Myers KD, Knappett PS, Shuai P, Hossain A, Lipsi M, Hossain S, Aitkenhead-Peterson J, Ahmed K (2018) The fate of arsenic in groundwater discharged to the Meghna River, Bangladesh. Environ Chem 15:29CrossRef
3.
Zurück zum Zitat Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nayak B, Pal A, Sengupta MK, Ahamed S (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53(5):542–551CrossRef Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, Nayak B, Pal A, Sengupta MK, Ahamed S (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53(5):542–551CrossRef
4.
Zurück zum Zitat Chakraborty M, Mukherjee A, Ahmed KM (2015) A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Curr Pollut Rep 1(4):220–247CrossRef Chakraborty M, Mukherjee A, Ahmed KM (2015) A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Curr Pollut Rep 1(4):220–247CrossRef
5.
Zurück zum Zitat Chakraborty M, Mukherjee A, Ahmed KM, Fryar AE, Bhattacharya A, Zahid A, Das R, Chattopadhyay S (2022) Influence of hydrostratigraphy on the distribution of groundwater arsenic in the transboundary Ganges River delta aquifer system, India and Bangladesh. GSA Bull 134(9–10):2680–2692CrossRef Chakraborty M, Mukherjee A, Ahmed KM, Fryar AE, Bhattacharya A, Zahid A, Das R, Chattopadhyay S (2022) Influence of hydrostratigraphy on the distribution of groundwater arsenic in the transboundary Ganges River delta aquifer system, India and Bangladesh. GSA Bull 134(9–10):2680–2692CrossRef
6.
Zurück zum Zitat Chakraborty M, Sarkar S, Mukherjee A, Shamsudduha M, Ahmed KM, Bhattacharya A, Mitra A (2020) Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci Total Environ 748:141107CrossRef Chakraborty M, Sarkar S, Mukherjee A, Shamsudduha M, Ahmed KM, Bhattacharya A, Mitra A (2020) Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci Total Environ 748:141107CrossRef
7.
Zurück zum Zitat Chapelle FH (2000) Ground-water microbiology and geochemistry. John Wiley & Sons Chapelle FH (2000) Ground-water microbiology and geochemistry. John Wiley & Sons
8.
Zurück zum Zitat Charette MA, Sholkovitz ER, Hansel CM (2005) Trace element cycling in a subterranean estuary: part 1 geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta 69(8):2095–2109 Charette MA, Sholkovitz ER, Hansel CM (2005) Trace element cycling in a subterranean estuary: part 1 geochemistry of the permeable sediments. Geochimica et Cosmochimica Acta 69(8):2095–2109
9.
Zurück zum Zitat Chugh R (1961) Tides in Hooghly river. Hydrol Sci J 6(2):10–26 Chugh R (1961) Tides in Hooghly river. Hydrol Sci J 6(2):10–26
10.
Zurück zum Zitat Datta S, Mailloux B, Jung H-B, Hoque M, Stute M, Ahmed K, Zheng Y (2009) Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh. Proc Natl Acad Sci 106(40):16930–16935CrossRef Datta S, Mailloux B, Jung H-B, Hoque M, Stute M, Ahmed K, Zheng Y (2009) Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh. Proc Natl Acad Sci 106(40):16930–16935CrossRef
11.
Zurück zum Zitat Desbarats A, Koenig C, Pal T, Mukherjee P, Beckie R (2014) Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India. Water Resour Res 50(6):4974–5002CrossRef Desbarats A, Koenig C, Pal T, Mukherjee P, Beckie R (2014) Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India. Water Resour Res 50(6):4974–5002CrossRef
12.
Zurück zum Zitat Dixit S, Hering JG (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRef Dixit S, Hering JG (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRef
13.
Zurück zum Zitat Dowling CB, Poreda RJ, Basu AR, Peters SL, Aggarwal PK (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour Res 38(9):12-11–12-18 Dowling CB, Poreda RJ, Basu AR, Peters SL, Aggarwal PK (2002) Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour Res 38(9):12-11–12-18
14.
Zurück zum Zitat Gao Z, Guo H, Chen D, Yu C, He C, Shi Q, Qiao W, Kersten M (2023) Transformation of dissolved organic matter and related arsenic mobility at a surface water-groundwater interface in Hetao Basin, China. Environ Pollut:122202 Gao Z, Guo H, Chen D, Yu C, He C, Shi Q, Qiao W, Kersten M (2023) Transformation of dissolved organic matter and related arsenic mobility at a surface water-groundwater interface in Hetao Basin, China. Environ Pollut:122202
15.
Zurück zum Zitat Ghosh D, Donselaar ME (2023) Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow-lake biogeochemistry and alluvial geomorphology. Sci Total Environ 856:158952CrossRef Ghosh D, Donselaar ME (2023) Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow-lake biogeochemistry and alluvial geomorphology. Sci Total Environ 856:158952CrossRef
16.
Zurück zum Zitat Guo Z, Chen K, Yi S, Zheng C (2023) Response of groundwater quality to river-aquifer interactions during managed aquifer recharge: a reactive transport modeling analysis. J Hydrol 616:128847CrossRef Guo Z, Chen K, Yi S, Zheng C (2023) Response of groundwater quality to river-aquifer interactions during managed aquifer recharge: a reactive transport modeling analysis. J Hydrol 616:128847CrossRef
17.
Zurück zum Zitat Hanor JS, Wendeborn FC (2023) Origin of sodium bicarbonate groundwaters, Southern Hills Aquifer System, USA by silicate hydrolysis. Appl Geochem 148:105512CrossRef Hanor JS, Wendeborn FC (2023) Origin of sodium bicarbonate groundwaters, Southern Hills Aquifer System, USA by silicate hydrolysis. Appl Geochem 148:105512CrossRef
18.
Zurück zum Zitat Horneman A, van Geen A, Kent DV, Mathe P, Zheng Y, Dhar R, O’connell S, Hoque M, Aziz Z, Shamsudduha M (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions part i: evidence from sediment profiles. Geochim Cosmochim Acta 68(17):3459–3473 Horneman A, van Geen A, Kent DV, Mathe P, Zheng Y, Dhar R, O’connell S, Hoque M, Aziz Z, Shamsudduha M (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions part i: evidence from sediment profiles. Geochim Cosmochim Acta 68(17):3459–3473
19.
Zurück zum Zitat Huang Y, Knappett PS, Berube M, Datta S, Cardenas MB, Rhodes KA, Dimova NT, Choudhury I, Ahmed KM, van Geen A (2022) Mass fluxes of dissolved arsenic discharging to the Meghna River are sufficient to account for the mass of arsenic in riverbank sediments. J Contam Hydrol 251:104068CrossRef Huang Y, Knappett PS, Berube M, Datta S, Cardenas MB, Rhodes KA, Dimova NT, Choudhury I, Ahmed KM, van Geen A (2022) Mass fluxes of dissolved arsenic discharging to the Meghna River are sufficient to account for the mass of arsenic in riverbank sediments. J Contam Hydrol 251:104068CrossRef
21.
Zurück zum Zitat Kazmierczak J, Postma D, Dang T, Van Hoang H, Larsen F, Hass AE, Hoffmann AH, Fensholt R, Pham NQ, Jakobsen R (2022) Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Sci Total Environ 814:152641CrossRef Kazmierczak J, Postma D, Dang T, Van Hoang H, Larsen F, Hass AE, Hoffmann AH, Fensholt R, Pham NQ, Jakobsen R (2022) Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Sci Total Environ 814:152641CrossRef
22.
Zurück zum Zitat Kontny A, Schneider M, Eiche E, Stopelli E, Glodowska M, Rathi B, Göttlicher J, Byrne JM, Kappler A, Berg M (2021) Iron mineral transformations and their impact on As (im) mobilization at redox interfaces in As-contaminated aquifers. Geochim Cosmochim Acta 296:189–209CrossRef Kontny A, Schneider M, Eiche E, Stopelli E, Glodowska M, Rathi B, Göttlicher J, Byrne JM, Kappler A, Berg M (2021) Iron mineral transformations and their impact on As (im) mobilization at redox interfaces in As-contaminated aquifers. Geochim Cosmochim Acta 296:189–209CrossRef
23.
Zurück zum Zitat Masuda H, Shinoda K, Okudaira T, Takahashi Y, Noguchi N (2012) Chlorite—source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochem J 46(5):381–391CrossRef Masuda H, Shinoda K, Okudaira T, Takahashi Y, Noguchi N (2012) Chlorite—source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochem J 46(5):381–391CrossRef
24.
Zurück zum Zitat McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems:301–312 McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems:301–312
25.
Zurück zum Zitat Mohajerin TJ, Neal AW, Telfeyan K, Sasihharan SM, Ford S, Yang N, Chevis DA, Grimm DA, Datta S, White CD (2014) Geochemistry of tungsten and arsenic in aquifer systems: a comparative study of groundwaters from West Bengal, India, and Nevada, USA. Water Air Soil Pollut 225(1):1–19CrossRef Mohajerin TJ, Neal AW, Telfeyan K, Sasihharan SM, Ford S, Yang N, Chevis DA, Grimm DA, Datta S, White CD (2014) Geochemistry of tungsten and arsenic in aquifer systems: a comparative study of groundwaters from West Bengal, India, and Nevada, USA. Water Air Soil Pollut 225(1):1–19CrossRef
26.
Zurück zum Zitat Mondal P, Reichelt-Brushett AJ, Jonathan M, Sujitha S, Sarkar SK (2018) Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ Sci Pollut Res 25:5681–5699CrossRef Mondal P, Reichelt-Brushett AJ, Jonathan M, Sujitha S, Sarkar SK (2018) Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ Sci Pollut Res 25:5681–5699CrossRef
27.
Zurück zum Zitat Mukherjee A, Fryar AE, Eastridge EM, Nally RS, Chakraborty M, Scanlon BR (2018) Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Sci Total Environ 645:1371–1387CrossRef Mukherjee A, Fryar AE, Eastridge EM, Nally RS, Chakraborty M, Scanlon BR (2018) Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Sci Total Environ 645:1371–1387CrossRef
28.
Zurück zum Zitat Mukherjee A, Fryar AE, Rowe HD (2007) Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. J Hydrol 334(1–2):151–161CrossRef Mukherjee A, Fryar AE, Rowe HD (2007) Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India. J Hydrol 334(1–2):151–161CrossRef
29.
Zurück zum Zitat Nickson R, McArthur J, Ravenscroft P, Burgess W, Ahmed K (2000) Mechanism of arsenic release to groundwater Bangladesh and West Bengal. Appl Geochem 15(4):403–413CrossRef Nickson R, McArthur J, Ravenscroft P, Burgess W, Ahmed K (2000) Mechanism of arsenic release to groundwater Bangladesh and West Bengal. Appl Geochem 15(4):403–413CrossRef
30.
Zurück zum Zitat Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454(7203):505–508CrossRef Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454(7203):505–508CrossRef
31.
Zurück zum Zitat Postma D, Pham TKT, Sø HU, Vi ML, Nguyen TT, Larsen F, Pham HV, Jakobsen R (2016) A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain Vietnam. Geochim Cosmochim Acta 195:277–292CrossRef Postma D, Pham TKT, Sø HU, Vi ML, Nguyen TT, Larsen F, Pham HV, Jakobsen R (2016) A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain Vietnam. Geochim Cosmochim Acta 195:277–292CrossRef
32.
Zurück zum Zitat Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185CrossRef Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185CrossRef
33.
Zurück zum Zitat Roy A, Chatterjee A (2015) Tectonic framework and evolutionary history of the Bengal Basin in the Indian subcontinent. Curr Sci:271–279 Roy A, Chatterjee A (2015) Tectonic framework and evolutionary history of the Bengal Basin in the Indian subcontinent. Curr Sci:271–279
34.
Zurück zum Zitat Roy J, Samal AC, Maity JP, Bhattacharya P, Mallick A, Santra SC (2022) Distribution of heavy metals in the sediments of Hooghly, Jalangi and Churni river in the regions of Murshidabad and Nadia districts of West Bengal, India. Int J Exp Res 27:59–68CrossRef Roy J, Samal AC, Maity JP, Bhattacharya P, Mallick A, Santra SC (2022) Distribution of heavy metals in the sediments of Hooghly, Jalangi and Churni river in the regions of Murshidabad and Nadia districts of West Bengal, India. Int J Exp Res 27:59–68CrossRef
36.
Zurück zum Zitat Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRef Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRef
37.
Zurück zum Zitat Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103 Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103
38.
Zurück zum Zitat Stahl MO, Harvey CF, van Geen A, Sun J, Trang TKP, Mai Lan V, Mai Phuong T, Hung Viet P, Bostick BC (2016) River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River Hanoi Vietnam. Water Resour Res 52(8):6321–6334 Stahl MO, Harvey CF, van Geen A, Sun J, Trang TKP, Mai Lan V, Mai Phuong T, Hung Viet P, Bostick BC (2016) River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River Hanoi Vietnam. Water Resour Res 52(8):6321–6334
39.
Zurück zum Zitat van Geen A, Zheng Y, Goodbred S Jr, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinman B, Hoque M (2008) Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol 42(7):2283–2288CrossRef van Geen A, Zheng Y, Goodbred S Jr, Horneman A, Aziz Z, Cheng Z, Stute M, Mailloux B, Weinman B, Hoque M (2008) Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ Sci Technol 42(7):2283–2288CrossRef
40.
Zurück zum Zitat Varner TS, Kulkarni HV, Bhuiyan MU, Cardenas MB, Knappett PS, Datta S (2023) Mineralogical associations of sedimentary arsenic within a contaminated aquifer determined through thermal treatment and spectroscopy. Minerals 13(7):889CrossRef Varner TS, Kulkarni HV, Bhuiyan MU, Cardenas MB, Knappett PS, Datta S (2023) Mineralogical associations of sedimentary arsenic within a contaminated aquifer determined through thermal treatment and spectroscopy. Minerals 13(7):889CrossRef
41.
Zurück zum Zitat Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PS, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM (2022) Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: the Meghna river, Bangladesh. Chemosphere 308:136289CrossRef Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PS, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM (2022) Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: the Meghna river, Bangladesh. Chemosphere 308:136289CrossRef
42.
Zurück zum Zitat Wallis I, Prommer H, Berg M, Siade AJ, Sun J, Kipfer R (2020) The river–groundwater interface as a hotspot for arsenic release. Nat Geosci 13(4):288–295CrossRef Wallis I, Prommer H, Berg M, Siade AJ, Sun J, Kipfer R (2020) The river–groundwater interface as a hotspot for arsenic release. Nat Geosci 13(4):288–295CrossRef
43.
Zurück zum Zitat Weinman B, Goodbred SL, Zheng Y, Aziz Z, Steckler M, van Geen A, Singhvi AK, Nagar YC (2008) Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh. Bull Geol Soc Am 120(11–12):1567–1580. https://doi.org/10.1130/b26209.1CrossRef Weinman B, Goodbred SL, Zheng Y, Aziz Z, Steckler M, van Geen A, Singhvi AK, Nagar YC (2008) Contributions of floodplain stratigraphy and evolution to the spatial patterns of groundwater arsenic in Araihazar, Bangladesh. Bull Geol Soc Am 120(11–12):1567–1580. https://​doi.​org/​10.​1130/​b26209.​1CrossRef
44.
Zurück zum Zitat Xia X, Yue W, Zhai Y, Teng Y (2023) DOM accumulation in the hyporheic zone promotes geogenic Fe mobility: a laboratory column study. Sci Total Environ 896:165140CrossRef Xia X, Yue W, Zhai Y, Teng Y (2023) DOM accumulation in the hyporheic zone promotes geogenic Fe mobility: a laboratory column study. Sci Total Environ 896:165140CrossRef
45.
Zurück zum Zitat Zhu Y, Zhai Y, Teng Y, Wang G, Du Q, Wang J, Yang G (2020) Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: evidence from long-term field pumping tests. Sci Total Environ 711:135141CrossRef Zhu Y, Zhai Y, Teng Y, Wang G, Du Q, Wang J, Yang G (2020) Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: evidence from long-term field pumping tests. Sci Total Environ 711:135141CrossRef
Metadaten
Titel
Distribution of Arsenic and Iron in Hyporheic Zone Sediments Along the Hooghly River
verfasst von
Thomas S. Varner
Saptarshi Saha
Kyungwon Kwak
Mesbah Uddin Bhuiyan
Harshad V. Kulkarni
Ananya Mukhopadhyay
Peter S. K. Knappett
Saugata Datta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1227-4_16