Skip to main content
Erschienen in: Journal of Materials Science 2/2017

16.09.2016 | Original Paper

Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy

verfasst von: Jon F. Ihlefeld, Joseph R. Michael, Bonnie B. McKenzie, David A. Scrymgeour, Jon-Paul Maria, Elizabeth A. Paisley, Andrew R. Kitahara

Erschienen in: Journal of Materials Science | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ferroelastic domain walls provide opportunities for deterministically controlling mechanical, optical, electrical, and thermal energy. Domain wall characterization in micro- and nanoscale systems, where their spacing may be of the order of 100 nm or less is presently limited to only a few techniques, such as piezoresponse force microscopy and transmission electron microscopy. These respective techniques cannot, however, independently characterize domain polarization orientation and domain wall motion in technologically relevant capacitor structures or in a non-destructive manner, thus presenting a limitation of their utility. In this work, we show how backscatter scanning electron microscopy utilizing channeling contrast yield can image the ferroelastic domain structure of ferroelectric films with domain wall spacing as narrow as 10 nm. Combined with electron backscatter diffraction to identify grain orientations, this technique provides information on domain orientation and domain wall type that cannot be readily measured using conventional non-destructive methods. In addition to grain orientation identification, this technique enables dynamic domain structure changes to be observed in functioning capacitors utilizing electrodes that are transparent to the high-energy backscattered electrons. This non-destructive, high-resolution domain imaging technique is applicable to a wide variety of ferroelectric thin films and a multitude of material systems where nanometer-scale crystallographic twin characterization is required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, Hawkridge ME, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin SV, Gemming S, Wang F, Catalan G, Scott JF, Spaldin NA, Orenstein J, Ramesh R (2009) Conduction at domain walls in oxide multiferroics. Nat Mater 8:229–234CrossRef Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, Hawkridge ME, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin SV, Gemming S, Wang F, Catalan G, Scott JF, Spaldin NA, Orenstein J, Ramesh R (2009) Conduction at domain walls in oxide multiferroics. Nat Mater 8:229–234CrossRef
2.
Zurück zum Zitat Guyonnet J, Gaponenko I, Gariglio S, Paruch P (2011) Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films. Adv Mater 23:5377–5382CrossRef Guyonnet J, Gaponenko I, Gariglio S, Paruch P (2011) Conduction at domain walls in insulating Pb(Zr0.2 Ti0.8)O3 thin films. Adv Mater 23:5377–5382CrossRef
3.
Zurück zum Zitat Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J. Phys Condens Mat 9:4943–4953CrossRef Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J. Phys Condens Mat 9:4943–4953CrossRef
4.
Zurück zum Zitat Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys 75:454CrossRef Zhang QM, Wang H, Kim N, Cross LE (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J Appl Phys 75:454CrossRef
5.
Zurück zum Zitat Arlt G, Hennings D, de With G (1985) Dielectric-properties of fine-grained barium-titanate ceramics. J Appl Phys 58:1619–1625CrossRef Arlt G, Hennings D, de With G (1985) Dielectric-properties of fine-grained barium-titanate ceramics. J Appl Phys 58:1619–1625CrossRef
6.
Zurück zum Zitat Land CE, Thacher PD (1969) Ferroelectric ceramic electrooptic materials and devices. P. IEEE 57:751–768CrossRef Land CE, Thacher PD (1969) Ferroelectric ceramic electrooptic materials and devices. P. IEEE 57:751–768CrossRef
7.
Zurück zum Zitat Land CE, Peercy PS (1977) Photo-Ferroelectric image storage in PLZT ceramics. Inf Disp 13:20–23 Land CE, Peercy PS (1977) Photo-Ferroelectric image storage in PLZT ceramics. Inf Disp 13:20–23
8.
Zurück zum Zitat Mante AJH, Volger J (1971) Phonon transport in barium titanate. Physica 52:577–604CrossRef Mante AJH, Volger J (1971) Phonon transport in barium titanate. Physica 52:577–604CrossRef
9.
Zurück zum Zitat Weilert MA, Msall ME, Anderson AC, Wolfe JP (1993) Phonon scattering from ferroelectric domain walls: phonon imaging in KDP. Phys Rev Lett 71:735–738CrossRef Weilert MA, Msall ME, Anderson AC, Wolfe JP (1993) Phonon scattering from ferroelectric domain walls: phonon imaging in KDP. Phys Rev Lett 71:735–738CrossRef
10.
Zurück zum Zitat Hopkins PE, Adamo C, Ye LH, Huey BD, Lee SR, Schlom DG, Ihlefeld JF (2013) Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite. Appl Phys Lett 102:121903CrossRef Hopkins PE, Adamo C, Ye LH, Huey BD, Lee SR, Schlom DG, Ihlefeld JF (2013) Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite. Appl Phys Lett 102:121903CrossRef
11.
Zurück zum Zitat Ihlefeld JF, Foley BM, Scrymgeour DA, Michael JR, McKenzie BB, Medlin DL, Wallace M, Trolier-McKinstry S, Hopkins PE (2015) Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett 15:1791–1795CrossRef Ihlefeld JF, Foley BM, Scrymgeour DA, Michael JR, McKenzie BB, Medlin DL, Wallace M, Trolier-McKinstry S, Hopkins PE (2015) Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett 15:1791–1795CrossRef
12.
Zurück zum Zitat Soergel E (2005) Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81:729–751CrossRef Soergel E (2005) Visualization of ferroelectric domains in bulk single crystals. Appl Phys B 81:729–751CrossRef
13.
Zurück zum Zitat Potnis PR, Tsou NT, Huber JE (2011) A review of domain modelling and domain imaging techniques in ferroelectric crystals. Materials 4:417–447CrossRef Potnis PR, Tsou NT, Huber JE (2011) A review of domain modelling and domain imaging techniques in ferroelectric crystals. Materials 4:417–447CrossRef
14.
Zurück zum Zitat Denev SA, Lummen TTA, Barnes E, Kumar A, Gopalan V (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94:2699–2727CrossRef Denev SA, Lummen TTA, Barnes E, Kumar A, Gopalan V (2011) Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc 94:2699–2727CrossRef
15.
Zurück zum Zitat Streiffer SK, Eastman JA, Fong DD, Thompson C, Munkholm A, Murty MVR, Auciello O, Bai GR, Stephenson GB (2002) Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys Rev Lett 89:067601CrossRef Streiffer SK, Eastman JA, Fong DD, Thompson C, Munkholm A, Murty MVR, Auciello O, Bai GR, Stephenson GB (2002) Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys Rev Lett 89:067601CrossRef
16.
Zurück zum Zitat Catalan G, Bea H, Fusil S, Bibes M, Paruch P, Barthelemy A, Scott JF (2008) Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys Rev Lett 100:027602CrossRef Catalan G, Bea H, Fusil S, Bibes M, Paruch P, Barthelemy A, Scott JF (2008) Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys Rev Lett 100:027602CrossRef
17.
Zurück zum Zitat Ikeda S, Uchikawa Y (1980) SEM imaging of ferroelectric domains. J Electron Microsc 29:209–217 Ikeda S, Uchikawa Y (1980) SEM imaging of ferroelectric domains. J Electron Microsc 29:209–217
18.
Zurück zum Zitat Zhu SN, Cao WW (1997) Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy. Phys Rev Lett 79:2558–2561CrossRef Zhu SN, Cao WW (1997) Direct observation of ferroelectric domains in LiTaO3 using environmental scanning electron microscopy. Phys Rev Lett 79:2558–2561CrossRef
19.
Zurück zum Zitat Sogr AA, Kopylova IB (1997) Observation of the domain structure of ferroelectrics with the scanning electron microscope. Ferroelectrics 191:401–406CrossRef Sogr AA, Kopylova IB (1997) Observation of the domain structure of ferroelectrics with the scanning electron microscope. Ferroelectrics 191:401–406CrossRef
20.
Zurück zum Zitat Le Bihan R (1989) Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy. Ferroelectrics 97:19–46CrossRef Le Bihan R (1989) Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy. Ferroelectrics 97:19–46CrossRef
21.
Zurück zum Zitat Gruner D, Shen ZJ (2010) Direct scanning electron microscopy imaging of ferroelectric domains after ion milling. J Am Ceram Soc 93:48–50CrossRef Gruner D, Shen ZJ (2010) Direct scanning electron microscopy imaging of ferroelectric domains after ion milling. J Am Ceram Soc 93:48–50CrossRef
22.
Zurück zum Zitat Omori M, Mishima T, Fujimoto T (2011) Modes of domain wall motion and polarization of lead zirconate titanate polycrystals. Jpn J Appl Phys 50:09NC03CrossRef Omori M, Mishima T, Fujimoto T (2011) Modes of domain wall motion and polarization of lead zirconate titanate polycrystals. Jpn J Appl Phys 50:09NC03CrossRef
23.
Zurück zum Zitat Reichmann A, Zankel A, Reingruber H, Polt P, Reichmann K (2011) Direct observation of ferroelectric domain formation by environmental scanning electron microscopy. J Eur Ceram Soc 31:2939–2942CrossRef Reichmann A, Zankel A, Reingruber H, Polt P, Reichmann K (2011) Direct observation of ferroelectric domain formation by environmental scanning electron microscopy. J Eur Ceram Soc 31:2939–2942CrossRef
24.
Zurück zum Zitat Howell JA, Vaudin MD, Cook RF (2014) Orientation, stress, and strain in an (001) barium titanate single crystal with 90° lamellar domains determined using electron backscatter diffraction. J Mater Sci 49:2213–2224. doi:10.1007/s10853-013-7915-3 CrossRef Howell JA, Vaudin MD, Cook RF (2014) Orientation, stress, and strain in an (001) barium titanate single crystal with 90° lamellar domains determined using electron backscatter diffraction. J Mater Sci 49:2213–2224. doi:10.​1007/​s10853-013-7915-3 CrossRef
25.
Zurück zum Zitat Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702CrossRef Ivry Y, Chu DP, Durkan C (2010) Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT. Nanotechnology 21:065702CrossRef
26.
Zurück zum Zitat Anbusathaiah V, Kan D, Kartawidjaja FC, Mahjoub R, Arredondo MA, Wicks S, Takeuchi I, Wang J, Nagarajan V (2009) Labile ferroelastic nanodomains in bilayered ferroelectric thin films. Adv Mater 21:3497–3502CrossRef Anbusathaiah V, Kan D, Kartawidjaja FC, Mahjoub R, Arredondo MA, Wicks S, Takeuchi I, Wang J, Nagarajan V (2009) Labile ferroelastic nanodomains in bilayered ferroelectric thin films. Adv Mater 21:3497–3502CrossRef
27.
Zurück zum Zitat Anbusathaiah V, Jesse S, Arredondo MA, Kartawidjaja FC, Ovchinnikov OS, Wang J, Kalinin SV, Nagarajan V (2010) Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater 58:5316–5325CrossRef Anbusathaiah V, Jesse S, Arredondo MA, Kartawidjaja FC, Ovchinnikov OS, Wang J, Kalinin SV, Nagarajan V (2010) Ferroelastic domain wall dynamics in ferroelectric bilayers. Acta Mater 58:5316–5325CrossRef
28.
Zurück zum Zitat Ehara Y, Yasui S, Nagata J, Kan D, Anbusathaiah V, Yamada T, Sakata O, Funakubo H, Nagarajan V (2011) Ultrafast switching of ferroelastic nanodomains in bilayered ferroelectric thin films. Appl Phys Lett 99:182906CrossRef Ehara Y, Yasui S, Nagata J, Kan D, Anbusathaiah V, Yamada T, Sakata O, Funakubo H, Nagarajan V (2011) Ultrafast switching of ferroelastic nanodomains in bilayered ferroelectric thin films. Appl Phys Lett 99:182906CrossRef
29.
Zurück zum Zitat Assink RA, Schwartz RW (1993) H–1 and C–13 NMR investigations of Pb(Zr, Ti)O3 thin-film precursor solutions. Chem Mater 5:511–517CrossRef Assink RA, Schwartz RW (1993) H–1 and C–13 NMR investigations of Pb(Zr, Ti)O3 thin-film precursor solutions. Chem Mater 5:511–517CrossRef
30.
Zurück zum Zitat Shelton CT, Kotula PG, Brennecka GL, Lam PG, Meyer KE, Maria J-P, Gibbons BJ, Ihlefeld JF (2012) Chemically homogeneous complex oxide thin films via improved substrate metallization. Adv Funct Mater 22:2295–2302CrossRef Shelton CT, Kotula PG, Brennecka GL, Lam PG, Meyer KE, Maria J-P, Gibbons BJ, Ihlefeld JF (2012) Chemically homogeneous complex oxide thin films via improved substrate metallization. Adv Funct Mater 22:2295–2302CrossRef
31.
Zurück zum Zitat Gruverman A, Rodriguez BJ, Kingon AI, Nemanich RJ, Cross JS, Tsukada M (2003) Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors. Appl Phys Lett 82:3071–3073CrossRef Gruverman A, Rodriguez BJ, Kingon AI, Nemanich RJ, Cross JS, Tsukada M (2003) Spatial inhomogeneity of imprint and switching behavior in ferroelectric capacitors. Appl Phys Lett 82:3071–3073CrossRef
32.
Zurück zum Zitat Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl Phys Lett 91:132903CrossRef Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr, Ti)O3 capacitors. Appl Phys Lett 91:132903CrossRef
33.
Zurück zum Zitat Jungk T, Hoffmann A, Soergel E (2007) Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy. J Appl Phys 102:084102CrossRef Jungk T, Hoffmann A, Soergel E (2007) Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy. J Appl Phys 102:084102CrossRef
34.
Zurück zum Zitat Kim Y, Lu XL, Jesse S, Hesse D, Alexe M, Kalinin SV (2013) Universality of polarization switching dynamics in ferroelectric capacitors revealed by 5d piezoresponse force microscopy. Adv Funct Mater 23:3971–3979CrossRef Kim Y, Lu XL, Jesse S, Hesse D, Alexe M, Kalinin SV (2013) Universality of polarization switching dynamics in ferroelectric capacitors revealed by 5d piezoresponse force microscopy. Adv Funct Mater 23:3971–3979CrossRef
35.
Zurück zum Zitat Yang SM, Kim TH, Yoon JG, Noh TW (2012) Nanoscale observation of time-dependent domain wall pinning as the origin of polarization fatigue. Adv Funct Mater 22:2310–2317CrossRef Yang SM, Kim TH, Yoon JG, Noh TW (2012) Nanoscale observation of time-dependent domain wall pinning as the origin of polarization fatigue. Adv Funct Mater 22:2310–2317CrossRef
36.
Zurück zum Zitat Gruverman A, Wu D, Scott JF (2008) Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys Rev Lett 100:097601CrossRef Gruverman A, Wu D, Scott JF (2008) Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale. Phys Rev Lett 100:097601CrossRef
37.
Zurück zum Zitat Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647CrossRef Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92:1629–1647CrossRef
38.
Zurück zum Zitat Kanaya K, Okayama S (1972) Penetration and energy-loss theory of electrons in solid targets. J Phys D 5:43CrossRef Kanaya K, Okayama S (1972) Penetration and energy-loss theory of electrons in solid targets. J Phys D 5:43CrossRef
39.
Zurück zum Zitat Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2:43–47CrossRef Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2:43–47CrossRef
40.
Zurück zum Zitat Mtebwa M, Feigl L, Yudin P, McGilly LJ, Shapovalov K, Tagantsev AK, Setter N (2015) Room temperature concurrent formation of ultra-dense arrays of ferroelectric domain walls. Appl Phys Lett 107:142903CrossRef Mtebwa M, Feigl L, Yudin P, McGilly LJ, Shapovalov K, Tagantsev AK, Setter N (2015) Room temperature concurrent formation of ultra-dense arrays of ferroelectric domain walls. Appl Phys Lett 107:142903CrossRef
Metadaten
Titel
Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy
verfasst von
Jon F. Ihlefeld
Joseph R. Michael
Bonnie B. McKenzie
David A. Scrymgeour
Jon-Paul Maria
Elizabeth A. Paisley
Andrew R. Kitahara
Publikationsdatum
16.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0402-x

Weitere Artikel der Ausgabe 2/2017

Journal of Materials Science 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.