Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2023

01.03.2023

Double Freon Hydrates: Composition and Thermodynamic Properties

verfasst von: Yu. Yu. Bozhko, R. K. Zhdanov, K. V. Gets, O. S. Subbotin, V. R. Belosludov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents the results of calculations of the P-T diagram of “ice phase (liquid phase)–gas phase–hydrate phase” equilibrium for freons R23 and R34a and 90%R23+10%R134a mixture. It is shown the freon R134a forms a stable CS-II hydrate phase in the temperature range of 260–280 K and pressure range of 0.0267–0.21 MPa and freon R23 creates a stable CS-I hydrate phase in the temperature range of 260–280 K and pressure range of 0.238–0.75 MPa. The calculation results are consistent with the known experimental data. It is shown that addition of 10% of R134a to the freon mixture results in the formation of CS-II hydrate phase in the temperature range of 260–280 K and pressure range of 0.0167–0.15 MPa.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sloan, E.D., Fundamental Principles and Applications of Natural Gas Hydrates, Nature, 2003, vol. 426, no. 6964, pp. 353–359.ADSCrossRef Sloan, E.D., Fundamental Principles and Applications of Natural Gas Hydrates, Nature, 2003, vol. 426, no. 6964, pp. 353–359.ADSCrossRef
2.
Zurück zum Zitat Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., and Ramjugernath, D., Application of Gas Hydrate Formation in Separation Processes: A Review of Experimental Studies, J. Chem. Thermodyn., 2012, vol. 46, pp. 62–71.CrossRef Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., and Ramjugernath, D., Application of Gas Hydrate Formation in Separation Processes: A Review of Experimental Studies, J. Chem. Thermodyn., 2012, vol. 46, pp. 62–71.CrossRef
3.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl. Surf. Sci., 2019, vol. 493, pp. 847–851.ADSCrossRef Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl. Surf. Sci., 2019, vol. 493, pp. 847–851.ADSCrossRef
4.
Zurück zum Zitat Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.CrossRef Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate during Boiling of Liquefied Gas with Its Simultaneous Stirring with Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 699–703.CrossRef
5.
Zurück zum Zitat Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.CrossRef Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 693–698.CrossRef
6.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.CrossRef Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 264–266.CrossRef
7.
Zurück zum Zitat Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.CrossRef Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.CrossRef
8.
Zurück zum Zitat Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., State of the Art and Kinetics of Refrigerant Hydrate Formation, Int. J. Refrig., 2019, vol. 98, pp. 410–427.CrossRef Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., State of the Art and Kinetics of Refrigerant Hydrate Formation, Int. J. Refrig., 2019, vol. 98, pp. 410–427.CrossRef
9.
Zurück zum Zitat Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Study and Modeling of the Kinetics of Refrigerant Hydrate Formation, J. Chem. Thermodyn., 2015, vol. 82, pp. 47–52.CrossRef Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Study and Modeling of the Kinetics of Refrigerant Hydrate Formation, J. Chem. Thermodyn., 2015, vol. 82, pp. 47–52.CrossRef
10.
Zurück zum Zitat Karamoddin, M. and Varaminian, F., Water Desalination Using R141b Gas Hydrate Formation, Desalin. Water Treat., 2014, vol. 52, nos. 13–15, pp. 2450–2456.CrossRef Karamoddin, M. and Varaminian, F., Water Desalination Using R141b Gas Hydrate Formation, Desalin. Water Treat., 2014, vol. 52, nos. 13–15, pp. 2450–2456.CrossRef
11.
Zurück zum Zitat Liang, D., Wang, R., Guo, K., and Fan, S., Prediction of Refrigerant Gas Hydrates Formation Conditions, J. Thermal Sci., 2001, vol. 10, no. 1, pp. 64–68.ADSCrossRef Liang, D., Wang, R., Guo, K., and Fan, S., Prediction of Refrigerant Gas Hydrates Formation Conditions, J. Thermal Sci., 2001, vol. 10, no. 1, pp. 64–68.ADSCrossRef
12.
Zurück zum Zitat Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation Characteristics and Anthropogenic Emissions from the Combustion of Double Gas Hydrates, Environ. Res., 2022, vol. 214, p. 113990.ADSCrossRef Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation Characteristics and Anthropogenic Emissions from the Combustion of Double Gas Hydrates, Environ. Res., 2022, vol. 214, p. 113990.ADSCrossRef
13.
Zurück zum Zitat Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation and Combustion of Mixed Methane-Ethane Hydrate, Fuel, 2022, vol. 325, p. 124771.CrossRef Antonov, D.V., Donskoy, I.G., Gaidukova, O.S., Misyura, S.Y., Morozov, V.S., Nyashina, G.S., and Strizhak, P.A., Dissociation and Combustion of Mixed Methane-Ethane Hydrate, Fuel, 2022, vol. 325, p. 124771.CrossRef
14.
Zurück zum Zitat Gaidukova, O., Misyura, S., Razumov, D., and Strizhak, P., Modeling of a Double Gas Hydrate Particle Ignition, Appl. Sci., 2022, vol. 12, no. 12, p. 5953.CrossRef Gaidukova, O., Misyura, S., Razumov, D., and Strizhak, P., Modeling of a Double Gas Hydrate Particle Ignition, Appl. Sci., 2022, vol. 12, no. 12, p. 5953.CrossRef
15.
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity above the Layer, Flow, Turbul. Combust., 2022, vol. 109, no. 1, pp. 175–191.CrossRef Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Combustion of a Powder Layer of Methane Hydrate: The Influence of Layer Height and Air Velocity above the Layer, Flow, Turbul. Combust., 2022, vol. 109, no. 1, pp. 175–191.CrossRef
16.
Zurück zum Zitat Semenov, A.P., Mendgaziev, R.I., Stoporev, A.S., Istomin, V.A., Sergeeva, D.V., Tulegenov, T.B., and Vinokurov, V.A., Dimethyl Sulfoxide as a Novel Thermodynamic Inhibitor of Carbon Dioxide Hydrate Formation, Chem. Engin. Sci., 2022, vol. 255, p. 117670.CrossRef Semenov, A.P., Mendgaziev, R.I., Stoporev, A.S., Istomin, V.A., Sergeeva, D.V., Tulegenov, T.B., and Vinokurov, V.A., Dimethyl Sulfoxide as a Novel Thermodynamic Inhibitor of Carbon Dioxide Hydrate Formation, Chem. Engin. Sci., 2022, vol. 255, p. 117670.CrossRef
17.
Zurück zum Zitat Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Measurements and Thermodynamic Modeling of Refrigerant Hydrates Dissociation Conditions, J. Chem. Thermodyn., 2015, vol. 80, pp. 30–40.CrossRef Hashemi, H., Babaee, S., Mohammadi, A.H., Naidoo, P., and Ramjugernath, D., Experimental Measurements and Thermodynamic Modeling of Refrigerant Hydrates Dissociation Conditions, J. Chem. Thermodyn., 2015, vol. 80, pp. 30–40.CrossRef
18.
Zurück zum Zitat Thakre, N. and Jana, A.K., Proposing Ab Initio Assisted Lattice Distortion Theory for Phase Equilibrium: Pure and Mixed Refrigerant Gas Hydrates, AIChE J., 2022, vol. 68, no. 2, p. e17463.CrossRef Thakre, N. and Jana, A.K., Proposing Ab Initio Assisted Lattice Distortion Theory for Phase Equilibrium: Pure and Mixed Refrigerant Gas Hydrates, AIChE J., 2022, vol. 68, no. 2, p. e17463.CrossRef
19.
Zurück zum Zitat Belosludov, V.R., Subbotin, O.S., Krupskii, D.S., Belosludov, R.V., Kawazoe, Y., and Kudoh, J.I., Physical and Chemical Properties of Gas Hydrates: Theoretical Aspects of Energy Storage Application, Mater. Transact., 2007, vol. 48, no. 4, pp. 704–710.CrossRef Belosludov, V.R., Subbotin, O.S., Krupskii, D.S., Belosludov, R.V., Kawazoe, Y., and Kudoh, J.I., Physical and Chemical Properties of Gas Hydrates: Theoretical Aspects of Energy Storage Application, Mater. Transact., 2007, vol. 48, no. 4, pp. 704–710.CrossRef
20.
Zurück zum Zitat Bozhko, Y., Subbotin, O.S., Fomin, V.M., Belosludov, V.R., and Kawazoe, Y., Theoretical Investigation of Structures and Compositions of Double Neon-Methane Clathrate Hydrates, Depending on Gas Phase Composition and Pressure, J. Eng. Therm., 2014, vol. 23, no. 1, pp. 9–19.CrossRef Bozhko, Y., Subbotin, O.S., Fomin, V.M., Belosludov, V.R., and Kawazoe, Y., Theoretical Investigation of Structures and Compositions of Double Neon-Methane Clathrate Hydrates, Depending on Gas Phase Composition and Pressure, J. Eng. Therm., 2014, vol. 23, no. 1, pp. 9–19.CrossRef
21.
Zurück zum Zitat Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, no. 18, pp. 12637–12641.CrossRef Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, no. 18, pp. 12637–12641.CrossRef
22.
Zurück zum Zitat Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, no. 12, p. 3336.CrossRef Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, no. 12, p. 3336.CrossRef
23.
Zurück zum Zitat Zhdanov, R.K., Gets, K.V., Belosludov, R.V., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Theoretical Modeling of the Thermodynamic Properties and the Phase Diagram of Binary Gas Hydrates of Argon and Hydrogen, Fluid Phase Equilibr., 2017, vol. 434, pp. 87–92.CrossRef Zhdanov, R.K., Gets, K.V., Belosludov, R.V., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Theoretical Modeling of the Thermodynamic Properties and the Phase Diagram of Binary Gas Hydrates of Argon and Hydrogen, Fluid Phase Equilibr., 2017, vol. 434, pp. 87–92.CrossRef
24.
Zurück zum Zitat Belosludov, V.R., Lavrentiev, M.Y., and Dyadin, Y.A., Theory of Clathrates, J. Inclus. Phenom. Molec. Recog. Chem., 1991, vol. 10, no. 4, pp. 399–422.CrossRef Belosludov, V.R., Lavrentiev, M.Y., and Dyadin, Y.A., Theory of Clathrates, J. Inclus. Phenom. Molec. Recog. Chem., 1991, vol. 10, no. 4, pp. 399–422.CrossRef
25.
Zurück zum Zitat Waals, J.V.D. and Platteeuw, J.C., Clathrate Solutions, Adv. Chem. Phys., 1958, pp. 1–57. Waals, J.V.D. and Platteeuw, J.C., Clathrate Solutions, Adv. Chem. Phys., 1958, pp. 1–57.
26.
Zurück zum Zitat Bernal, J.D. and Fowler, R.H., A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. Chem. Phys., 1933, vol. 1, no. 8, pp. 515–548.ADSCrossRef Bernal, J.D. and Fowler, R.H., A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. Chem. Phys., 1933, vol. 1, no. 8, pp. 515–548.ADSCrossRef
27.
Zurück zum Zitat Kubota, H., Shimizu, K., Tanaka, Y., and Makita, T.J., Dissociation Heat Transfer Characteristics of Methane Hydrates, Chem. Eng. Jpn., 1984, vol. 17, no. 4, pp. 423–429.CrossRef Kubota, H., Shimizu, K., Tanaka, Y., and Makita, T.J., Dissociation Heat Transfer Characteristics of Methane Hydrates, Chem. Eng. Jpn., 1984, vol. 17, no. 4, pp. 423–429.CrossRef
28.
Zurück zum Zitat Mooijer-van den Heuvel, M.M., Sawirjo, N.M., and Peters, C.J., Influence of Fluoroalkanes on the Phase Behaviour of Methane Gas Hydrate Systems, Fluid Phase Equilibr., 2006, vol. 241, nos. 1/2, pp. 124–137.CrossRef Mooijer-van den Heuvel, M.M., Sawirjo, N.M., and Peters, C.J., Influence of Fluoroalkanes on the Phase Behaviour of Methane Gas Hydrate Systems, Fluid Phase Equilibr., 2006, vol. 241, nos. 1/2, pp. 124–137.CrossRef
29.
Zurück zum Zitat Mohammadi, A.H. and Richon, D., Pressure-Temperature Phase Diagrams of Clathrate Hydrates of HFC-134a, HFC-152a and HFC-32, in Procs. of 2010 AIChE Annual Meeting (p. x.), Omnipress, 2010. Mohammadi, A.H. and Richon, D., Pressure-Temperature Phase Diagrams of Clathrate Hydrates of HFC-134a, HFC-152a and HFC-32, in Procs. of 2010 AIChE Annual Meeting (p. x.), Omnipress, 2010.
30.
Zurück zum Zitat Liang, D., Guo, K., Wang, R., and Fan, S., Hydrate Equilibrium Data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a), Fluid Phase Equilibr., 2001, vol. 187, pp. 61–70.CrossRef Liang, D., Guo, K., Wang, R., and Fan, S., Hydrate Equilibrium Data of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1-dichloro-1-fluoroethane (HCFC-141b) and 1, 1-difluoroethane (HFC-152a), Fluid Phase Equilibr., 2001, vol. 187, pp. 61–70.CrossRef
31.
Zurück zum Zitat Hashimoto, S., Makino, T., Inoue, Y., and Ohgaki, K., Three-Phase Equilibrium Relations and Hydrate Dissociation Enthalpies for Hydrofluorocarbon Hydrate Systems: HFC-134a,-125, and-143a Hydrates, J. Chem. Engin. Data, 2010, vol. 55, no. 11, pp. 4951–4955.CrossRef Hashimoto, S., Makino, T., Inoue, Y., and Ohgaki, K., Three-Phase Equilibrium Relations and Hydrate Dissociation Enthalpies for Hydrofluorocarbon Hydrate Systems: HFC-134a,-125, and-143a Hydrates, J. Chem. Engin. Data, 2010, vol. 55, no. 11, pp. 4951–4955.CrossRef
32.
Zurück zum Zitat Akiya, T., Shimazaki, T., Oowa, M., Matsuo, M., and Yoshida, Y., Formation Conditions of Clathrates between HFC Alternative Refrigerants and Water, Int. J. Thermophys., 1999, vol. 20, no. 6, pp. 1753–1763.ADSCrossRef Akiya, T., Shimazaki, T., Oowa, M., Matsuo, M., and Yoshida, Y., Formation Conditions of Clathrates between HFC Alternative Refrigerants and Water, Int. J. Thermophys., 1999, vol. 20, no. 6, pp. 1753–1763.ADSCrossRef
Metadaten
Titel
Double Freon Hydrates: Composition and Thermodynamic Properties
verfasst von
Yu. Yu. Bozhko
R. K. Zhdanov
K. V. Gets
O. S. Subbotin
V. R. Belosludov
Publikationsdatum
01.03.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282301006X

Weitere Artikel der Ausgabe 1/2023

Journal of Engineering Thermophysics 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.