Skip to main content
Erschienen in: Journal of Materials Science 4/2018

25.10.2017 | Energy materials

Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries

verfasst von: Rui Ling, Shu Cai, Dongli Xie, Wenyu Shen, Xudong Hu, Yue Li, Shaoshuai Hua, Yangyang Jiang, Xiaohong Sun

Erschienen in: Journal of Materials Science | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the hierarchical hollow Na2FePO4F/C microspheres as high-performance cathode for sodium-ion batteries (SIBs) are developed by adjusting the reaction time of solvothermal synthesis. With prolonging solvothermal time, the structure of the microspheres gradually changes from urchin-like hollow structure to acanthosphere-like hollow structure and finally to double-shelled hollow structure. Dissolution–recrystallization mechanism is proposed to better understand the formation of the double-shelled hollow microspheres of Na2FePO4F/C. When evaluated as cathode materials for SIBs, the double-shelled hollow Na2FePO4F/C sample delivers a discharge capacity as high as 120.1 mAh g−1 at 0.1 C and maintains the capacity retention of 92.5% at 1 C after 200 cycles. For the purpose of explaining the improved electrochemical performance of the double-shelled hollow Na2FePO4F/C materials, all the electrodes are analyzed with cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the excellent electrochemical performances are mainly attributed to its unique structure, which can enhance electronic and ionic conductivity during repeated Na+ insertion/extraction processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16:15007–15018CrossRef Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S (2014) Negative electrodes for Na-ion batteries. Phys Chem Chem Phys 16:15007–15018CrossRef
2.
Zurück zum Zitat Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH (2013) Update on Na-based battery materials: a growing research path. Sci Energy Environ 6:2312–2337CrossRef Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH (2013) Update on Na-based battery materials: a growing research path. Sci Energy Environ 6:2312–2337CrossRef
3.
Zurück zum Zitat Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721CrossRef
4.
Zurück zum Zitat Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450CrossRef Saravanan K, Mason CW, Rudola A, Wong KH, Balaya P (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450CrossRef
5.
Zurück zum Zitat Xiong FY, Tan SS, Wei QL, Zhang GB, Sheng JZ, An QY, Mai LQ (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352CrossRef Xiong FY, Tan SS, Wei QL, Zhang GB, Sheng JZ, An QY, Mai LQ (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352CrossRef
6.
Zurück zum Zitat Li J, Wang J, Liang X (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Appl Mater Interfaces 6:24–30CrossRef Li J, Wang J, Liang X (2014) Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. Appl Mater Interfaces 6:24–30CrossRef
7.
Zurück zum Zitat Li JF, Xiong SL, Liu YR, Qian YT (2013) Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2:1249–1260CrossRef Li JF, Xiong SL, Liu YR, Qian YT (2013) Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2:1249–1260CrossRef
8.
Zurück zum Zitat Jin LM, Qiu YC, Deng H, Li WS, Li H, Yang SH (2011) Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochim Acta 56:9127–9132CrossRef Jin LM, Qiu YC, Deng H, Li WS, Li H, Yang SH (2011) Hollow CuFe2O4 spheres encapsulated in carbon shells as an anode material for rechargeable lithium-ion batteries. Electrochim Acta 56:9127–9132CrossRef
9.
Zurück zum Zitat Han L, Liu R, Li C (2012) Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. J Mater Chem 22:17079–17085CrossRef Han L, Liu R, Li C (2012) Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid. J Mater Chem 22:17079–17085CrossRef
10.
Zurück zum Zitat Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748CrossRef Zhou L, Zhao D, Lou XW (2012) Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater 24:745–748CrossRef
11.
Zurück zum Zitat Liu W, Liu J, Chen KF (2014) Enhancing the electrochemical performance of the LiMn2O4 hollow microsphere cathode with a LiNi0.5Mn1.5O4 coated layer. Chem Eur J 20:824–830CrossRef Liu W, Liu J, Chen KF (2014) Enhancing the electrochemical performance of the LiMn2O4 hollow microsphere cathode with a LiNi0.5Mn1.5O4 coated layer. Chem Eur J 20:824–830CrossRef
12.
Zurück zum Zitat Ellis BL, Makahnouk WR, Rowan-Weetaluktuk WN, Ryan DH (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070CrossRef Ellis BL, Makahnouk WR, Rowan-Weetaluktuk WN, Ryan DH (2010) Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem Mater 22:1059–1070CrossRef
13.
Zurück zum Zitat Lee IK, Shim IB, Kim C (2011) SPhase transition studies of sodium deintercalated Na2−x FePO4F (0 ≤ x ≤ 1) by Mössbauer spectroscopy. J Appl Phys 109:107–136 Lee IK, Shim IB, Kim C (2011) SPhase transition studies of sodium deintercalated Na2−x FePO4F (0 ≤ x ≤ 1) by Mössbauer spectroscopy. J Appl Phys 109:107–136
14.
Zurück zum Zitat Brisbois M, Caes S, Sougrati MT (2016) Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: operando Mössbauer study of spray-dried composites. Sol Energy Mater Sol Cells 148:67–72CrossRef Brisbois M, Caes S, Sougrati MT (2016) Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: operando Mössbauer study of spray-dried composites. Sol Energy Mater Sol Cells 148:67–72CrossRef
15.
Zurück zum Zitat Law M, Ramar V, Balaya P (2015) Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 6:50155–50164CrossRef Law M, Ramar V, Balaya P (2015) Synthesis, characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 6:50155–50164CrossRef
16.
Zurück zum Zitat Wu XB, Zheng JM, Gong ZL, Yang Y (2011) Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1−x Mn x PO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J Mater Chem 21:18630–18637CrossRef Wu XB, Zheng JM, Gong ZL, Yang Y (2011) Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1−x Mn x PO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery. J Mater Chem 21:18630–18637CrossRef
17.
Zurück zum Zitat Cui D, Chen S, Han C, Yuan Y (2016) Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J Power Sour 301:87–90CrossRef Cui D, Chen S, Han C, Yuan Y (2016) Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries. J Power Sour 301:87–90CrossRef
18.
Zurück zum Zitat Yu L, Chen S, Wu B, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300CrossRef Yu L, Chen S, Wu B, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25:2296–2300CrossRef
19.
Zurück zum Zitat Xia Y, Wang B, Zhao X, Wang G, Wang H (2016) Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochim Acta 187:55–64CrossRef Xia Y, Wang B, Zhao X, Wang G, Wang H (2016) Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries. Electrochim Acta 187:55–64CrossRef
20.
Zurück zum Zitat Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A (2013) Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J Power Sour 223:62–67CrossRef Langrock A, Xu Y, Liu Y, Ehrman S, Manivannan A (2013) Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J Power Sour 223:62–67CrossRef
21.
Zurück zum Zitat Li Y, Geng G, Hao J, Zhang J, Yang C (2015) Optimized synthesis of LiFePO4 composites via rheological phase assisted method from FePO4 with acetic acid as dispersant. Electrochim Acta 186:157–164CrossRef Li Y, Geng G, Hao J, Zhang J, Yang C (2015) Optimized synthesis of LiFePO4 composites via rheological phase assisted method from FePO4 with acetic acid as dispersant. Electrochim Acta 186:157–164CrossRef
22.
Zurück zum Zitat Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153CrossRef Qin Z, Zhou X, Xia Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21153CrossRef
23.
Zurück zum Zitat Wu T, Ma X, Liu X, Zeng G, Xiao W (2015) Effect of calcination temperature on electrochemical performances of LiFePO4/C cathode material. Mater Technol 30:70–74CrossRef Wu T, Ma X, Liu X, Zeng G, Xiao W (2015) Effect of calcination temperature on electrochemical performances of LiFePO4/C cathode material. Mater Technol 30:70–74CrossRef
24.
Zurück zum Zitat Peng Q, Dong YJ, Li YD, Zeng G, Xiao W (2003) ZnSe semiconductor hollow microspheres. Angew Chem Int Ed 42:3027–3030CrossRef Peng Q, Dong YJ, Li YD, Zeng G, Xiao W (2003) ZnSe semiconductor hollow microspheres. Angew Chem Int Ed 42:3027–3030CrossRef
25.
Zurück zum Zitat Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967CrossRef Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967CrossRef
26.
Zurück zum Zitat Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng 37:129–281CrossRef Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng 37:129–281CrossRef
27.
Zurück zum Zitat Bajpai V, He PG, Dai LM (2004) Conducting-polymer microcontainers: controlled syntheses and potential applications. Adv Funct Mater 14:145–151CrossRef Bajpai V, He PG, Dai LM (2004) Conducting-polymer microcontainers: controlled syntheses and potential applications. Adv Funct Mater 14:145–151CrossRef
28.
Zurück zum Zitat Bai J, Li XG, Liu GZ, Qian YT, Xiong SL (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRef Bai J, Li XG, Liu GZ, Qian YT, Xiong SL (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020CrossRef
30.
Zurück zum Zitat Liu X, Li YF, Zhu WW, Fu PF (2013) Building on size-controllable hollow nanospheres with superparamagnetism derived from solid Fe3O4 nanospheres: preparation, characterization and application for lipase immobilization. CrystEngComm 15:4937–4947CrossRef Liu X, Li YF, Zhu WW, Fu PF (2013) Building on size-controllable hollow nanospheres with superparamagnetism derived from solid Fe3O4 nanospheres: preparation, characterization and application for lipase immobilization. CrystEngComm 15:4937–4947CrossRef
31.
Zurück zum Zitat Zhou Q, Liu L, Guo HP, Xu R, Tan JL, Yan ZC, Huang ZF, Shu HB, Yang XK, Wang XY (2015) Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes. Electrochim Acta 151:502–509CrossRef Zhou Q, Liu L, Guo HP, Xu R, Tan JL, Yan ZC, Huang ZF, Shu HB, Yang XK, Wang XY (2015) Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes. Electrochim Acta 151:502–509CrossRef
32.
Zurück zum Zitat Park HS, Kim TH, Lee MH, Song HK (2012) Catalytic carbonization of an uncarbonizable precursor by transition metals in olivine cathode materials of lithium ion batteries. J Mater Chem 22:20305–20310CrossRef Park HS, Kim TH, Lee MH, Song HK (2012) Catalytic carbonization of an uncarbonizable precursor by transition metals in olivine cathode materials of lithium ion batteries. J Mater Chem 22:20305–20310CrossRef
33.
Zurück zum Zitat Han DW, Ryu WH, Kim WK, Lim SJ (2013) Tailoring crystal structure and morphology of LiFePO4/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO4 seed crystals. ACS Appl Mater 5:1342–1347CrossRef Han DW, Ryu WH, Kim WK, Lim SJ (2013) Tailoring crystal structure and morphology of LiFePO4/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO4 seed crystals. ACS Appl Mater 5:1342–1347CrossRef
34.
Zurück zum Zitat Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:A1108–A1114CrossRef
35.
Zurück zum Zitat Zhu CB, Song KP, van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180CrossRef Zhu CB, Song KP, van Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180CrossRef
36.
Zurück zum Zitat Xu YA, Wei QL, Xu C, Li QD, An QY, Zhang PF, Sheng JZ, Zhou L, Liqiang Mai LQ (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389CrossRef Xu YA, Wei QL, Xu C, Li QD, An QY, Zhang PF, Sheng JZ, Zhou L, Liqiang Mai LQ (2016) Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv Energy Mater 6:1600389CrossRef
37.
Zurück zum Zitat Ling R, Cai S, Shen SB, Hu XD, Xie DL, Zhang FY, Sun XH (2017) synthesis of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries. J Alloys Compd 704:631–640CrossRef Ling R, Cai S, Shen SB, Hu XD, Xie DL, Zhang FY, Sun XH (2017) synthesis of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries. J Alloys Compd 704:631–640CrossRef
38.
Zurück zum Zitat Kosova NV, Podugolnikov VR, Devyatkina ET, Slobodyuk AB (2014) Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Mater Res Bull 60:849–857CrossRef Kosova NV, Podugolnikov VR, Devyatkina ET, Slobodyuk AB (2014) Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Mater Res Bull 60:849–857CrossRef
39.
Zurück zum Zitat Law M, Ramar V, Balaya P (2015) characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 5:50155–50164CrossRef Law M, Ramar V, Balaya P (2015) characterisation and enhanced electrochemical performance of nanostructured Na2FePO4F for sodium batteries. RSC Adv 5:50155–50164CrossRef
40.
Zurück zum Zitat Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014) Sub-micrometric Li4−x Na x Ti5O12 (0 ≤ x ≤ 0.2) spinel as anode material exhibiting high rate capability. J Power Sour 246:505–511CrossRef Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014) Sub-micrometric Li4−x Na x Ti5O12 (0 ≤ x ≤ 0.2) spinel as anode material exhibiting high rate capability. J Power Sour 246:505–511CrossRef
41.
Zurück zum Zitat Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J Electrochem Soc 157:A1183–A1187CrossRef Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J Electrochem Soc 157:A1183–A1187CrossRef
42.
Zurück zum Zitat Gao HY, Jiao LF, Yang JQ, Qi Z, Wang YJ, Yuan HT (2013) High rate capability of Co-doped LiFePO4/C. Electrochim Acta 97:143–149CrossRef Gao HY, Jiao LF, Yang JQ, Qi Z, Wang YJ, Yuan HT (2013) High rate capability of Co-doped LiFePO4/C. Electrochim Acta 97:143–149CrossRef
43.
Zurück zum Zitat Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) High rate capability of co-doped LiFePO4/C. J Power Sour 159:717–720CrossRef Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) High rate capability of co-doped LiFePO4/C. J Power Sour 159:717–720CrossRef
44.
Zurück zum Zitat Gao F, Tang ZY (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochem Acta 53:5071–5075CrossRef Gao F, Tang ZY (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochem Acta 53:5071–5075CrossRef
45.
Zurück zum Zitat Jiang T, Wei YJ, Pan WC, Li Z, Ming X, Chen G, Wang CZ (2009) Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J Alloys Compd 488:26–29CrossRef Jiang T, Wei YJ, Pan WC, Li Z, Ming X, Chen G, Wang CZ (2009) Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J Alloys Compd 488:26–29CrossRef
46.
Zurück zum Zitat Yu F, Zhang L, Lai L, Zhu M, Guo Y, Xia L, Qi P, Wang C (2015) High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide. Electrochim Acta 151:240–248CrossRef Yu F, Zhang L, Lai L, Zhu M, Guo Y, Xia L, Qi P, Wang C (2015) High electrochemical performance of LiFePO4 cathode material via in-situ microwave exfoliated graphene oxide. Electrochim Acta 151:240–248CrossRef
47.
Zurück zum Zitat Shu H, Chen M, Wen F, Fu Y, Liang Q, Yang X, Qi P, Shen Y (2015) Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials. Electrochim Acta 152:368–377CrossRef Shu H, Chen M, Wen F, Fu Y, Liang Q, Yang X, Qi P, Shen Y (2015) Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials. Electrochim Acta 152:368–377CrossRef
48.
Zurück zum Zitat Brisbois M, Krins N, Hermannb RP, Schrijnemakers A, Cloots R, Vertruyen B, Boschini F (2014) Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater Lett 130:263–266CrossRef Brisbois M, Krins N, Hermannb RP, Schrijnemakers A, Cloots R, Vertruyen B, Boschini F (2014) Spray-drying synthesis of Na2FePO4F/carbon powders for lithium-ion batteries. Mater Lett 130:263–266CrossRef
Metadaten
Titel
Double-shelled hollow Na2FePO4F/C spheres cathode for high-performance sodium-ion batteries
verfasst von
Rui Ling
Shu Cai
Dongli Xie
Wenyu Shen
Xudong Hu
Yue Li
Shaoshuai Hua
Yangyang Jiang
Xiaohong Sun
Publikationsdatum
25.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1738-6

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Science 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.