Skip to main content
Erschienen in: Pattern Analysis and Applications 2/2023

06.10.2022 | Industrial and Commercial Application

Dual autoencoder based zero shot learning in special domain

verfasst von: Qiong Li, Eric Rigall, Xin Sun, Kin Man Lam, Junyu Dong

Erschienen in: Pattern Analysis and Applications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zero-shot learning aims to learn a visual classifier for a category which has no training samples leveraging its semantic information and its relationship to other categories. It is common, yet vital, in practical visual scenarios, and particularly prominent in the uncharted ocean field. Phytoplankton plays an important part in the marine ecological environment. It is common to encounter the zero-shot recognition problem during the in situ observation. Therefore, we propose a dual autoencoder model, which contains two similar encoder–decoder structures, to tackle the zero-shot recognition problem. The first one is used for the projection from the visual feature space to a latent space, then to the semantic space. Inversely, the second one projects from the semantic space to another latent space, then back to the visual feature space. This structure guarantees the projection from the visual feature space to the semantic space to be more effective, through the stable mutual mapping. Experimental results on four benchmarks demonstrate that the proposed dual autoencoder model achieves competitive performance compared with six recent state-of-the-art methods. Furthermore, we apply our algorithm to phytoplankton classification. We manually annotated phytoplankton attributes to develop a practical dataset for this real and special domain application, i.e., Zero-shot learning dataset for PHYtoplankton (ZeroPHY). Experiment results show that our method achieves the best performance on this real-world application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang S, Elhoseiny M, Elgammal A, Yang D (2015) Learning hypergraph-regularized attribute predictors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 409–417 Huang S, Elhoseiny M, Elgammal A, Yang D (2015) Learning hypergraph-regularized attribute predictors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 409–417
2.
Zurück zum Zitat Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Ranzato M, Mikolov T (2013) Devise: a deep visual-semantic embedding model. Adv Neural Inf Process Syst 26:2121–2129 Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Ranzato M, Mikolov T (2013) Devise: a deep visual-semantic embedding model. Adv Neural Inf Process Syst 26:2121–2129
3.
Zurück zum Zitat Liu Z, Zhang X, Zhu Z, Zheng S, Zhao Y, Cheng J (2020) Convolutional prototype learning for zero-shot recognition. Image Vis Comput 98:103924CrossRef Liu Z, Zhang X, Zhu Z, Zheng S, Zhao Y, Cheng J (2020) Convolutional prototype learning for zero-shot recognition. Image Vis Comput 98:103924CrossRef
4.
Zurück zum Zitat Sun X, Xv H, Dong J, Zhou H, Chen C, Li Q (2020) Few-shot learning for domain-specific fine-grained image classification. IEEE Trans Ind Electron 68(4):3588–3598CrossRef Sun X, Xv H, Dong J, Zhou H, Chen C, Li Q (2020) Few-shot learning for domain-specific fine-grained image classification. IEEE Trans Ind Electron 68(4):3588–3598CrossRef
5.
Zurück zum Zitat Fu Y, Sigal L (2016) Semi-supervised vocabulary-informed learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 5337–5346 Fu Y, Sigal L (2016) Semi-supervised vocabulary-informed learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 5337–5346
6.
Zurück zum Zitat Ji Z, Sun Y, Yu Y, Guo J, Pang Y (2018) Semantic softmax loss for zero-shot learning. Neurocomputing 316:369–375CrossRef Ji Z, Sun Y, Yu Y, Guo J, Pang Y (2018) Semantic softmax loss for zero-shot learning. Neurocomputing 316:369–375CrossRef
7.
Zurück zum Zitat Larochelle H, Erhan D, Bengio Y (2008) Zero-data learning of new tasks. AAAI 1:3 Larochelle H, Erhan D, Bengio Y (2008) Zero-data learning of new tasks. AAAI 1:3
8.
Zurück zum Zitat Qin J, Wang Y, Liu L, Chen J, Shao L (2016) Beyond semantic attributes: Discrete latent attributes learning for zero-shot recognition. IEEE Signal Process Lett 23(11):1667–1671CrossRef Qin J, Wang Y, Liu L, Chen J, Shao L (2016) Beyond semantic attributes: Discrete latent attributes learning for zero-shot recognition. IEEE Signal Process Lett 23(11):1667–1671CrossRef
9.
Zurück zum Zitat Ma Y, Xu X, Shen F, Shen HT (2020) Similarity preserving feature generating networks for zero-shot learning. Neurocomputing 406:333–342CrossRef Ma Y, Xu X, Shen F, Shen HT (2020) Similarity preserving feature generating networks for zero-shot learning. Neurocomputing 406:333–342CrossRef
10.
Zurück zum Zitat Duan K, Parikh D, Crandall D, Grauman K (2012) Discovering localized attributes for fine-grained recognition. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 3474–3481 Duan K, Parikh D, Crandall D, Grauman K (2012) Discovering localized attributes for fine-grained recognition. In: 2012 IEEE conference on computer vision and pattern recognition. IEEE, pp 3474–3481
11.
Zurück zum Zitat Lv H, Chen J, Pan T, Zhou Z (2020) Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis. Appl Soft Comput 95:106577CrossRef Lv H, Chen J, Pan T, Zhou Z (2020) Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis. Appl Soft Comput 95:106577CrossRef
12.
Zurück zum Zitat Lumini A, Nanni L (2019) Deep learning and transfer learning features for plankton classification. Ecol Inf 51:33–43CrossRef Lumini A, Nanni L (2019) Deep learning and transfer learning features for plankton classification. Ecol Inf 51:33–43CrossRef
13.
Zurück zum Zitat Potiris E, Frangoulis C, Kalampokis A, Ntoumas M, Pettas M, Petihakis G, Zervakis V (2018) Acoustic doppler current profiler observations of migration patternsof zooplankton in the cretan sea. Ocean Sci 14(4):783–800CrossRef Potiris E, Frangoulis C, Kalampokis A, Ntoumas M, Pettas M, Petihakis G, Zervakis V (2018) Acoustic doppler current profiler observations of migration patternsof zooplankton in the cretan sea. Ocean Sci 14(4):783–800CrossRef
14.
Zurück zum Zitat Sknarya AV, Razin AA, Toshchov SA, Demidov AI (2018) Ultra wideband sounding signals in hydroacoustic systems. Rensit Radioelectron Nanosyst Inf Technol 10(2):209–212 Sknarya AV, Razin AA, Toshchov SA, Demidov AI (2018) Ultra wideband sounding signals in hydroacoustic systems. Rensit Radioelectron Nanosyst Inf Technol 10(2):209–212
15.
Zurück zum Zitat Dmitrieva Md et al. (2018) Object characterisation using wideband sonar pulses. PhD thesis, Heriot-Watt University Dmitrieva Md et al. (2018) Object characterisation using wideband sonar pulses. PhD thesis, Heriot-Watt University
16.
Zurück zum Zitat Warren JD, Stanton TK, Benfield MC, Wiebe PH, Chu D, Sutor M (2001) In situ measurements of acoustic target strengths of gas-bearing siphonophores. ICES J Mar Sci 58(4):740–749CrossRef Warren JD, Stanton TK, Benfield MC, Wiebe PH, Chu D, Sutor M (2001) In situ measurements of acoustic target strengths of gas-bearing siphonophores. ICES J Mar Sci 58(4):740–749CrossRef
17.
Zurück zum Zitat Proctor CW, Roesler CS (2010) New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence. Limnol Oceanogr Methods 8(12):695–708CrossRef Proctor CW, Roesler CS (2010) New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence. Limnol Oceanogr Methods 8(12):695–708CrossRef
18.
Zurück zum Zitat Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanog 38(8):1646–1665CrossRef Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanog 38(8):1646–1665CrossRef
19.
Zurück zum Zitat Sullivan-Silva KB, Forbes MJ (1992) Behavioral study of zooplankton response to high-frequency acoustics. J Acoust Soc Am 92(4):2423–2423CrossRef Sullivan-Silva KB, Forbes MJ (1992) Behavioral study of zooplankton response to high-frequency acoustics. J Acoust Soc Am 92(4):2423–2423CrossRef
20.
Zurück zum Zitat Yu L, Xu L (2004) Calibration method of the red tide species coun precision based on digital microscope. Ocean Tech China 23(1):31–34 (Chinese) Yu L, Xu L (2004) Calibration method of the red tide species coun precision based on digital microscope. Ocean Tech China 23(1):31–34 (Chinese)
21.
Zurück zum Zitat Olson RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nano- and microplankton: imaging flowcytobot. Limnol Oceanogr Methods 5(6):195–203CrossRef Olson RJ, Sosik HM (2007) A submersible imaging-in-flow instrument to analyze nano- and microplankton: imaging flowcytobot. Limnol Oceanogr Methods 5(6):195–203CrossRef
22.
Zurück zum Zitat Orenstein EC, Beijbom O, Peacock EE, Sosik HM (2015) Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv:1510.00745 Orenstein EC, Beijbom O, Peacock EE, Sosik HM (2015) Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv:​1510.​00745
23.
Zurück zum Zitat Li X, Cui Z (2016) Deep residual networks for plankton classification. In: OCEANS 2016 MTS/IEEE Monterey. IEEE pp 1–4 Li X, Cui Z (2016) Deep residual networks for plankton classification. In: OCEANS 2016 MTS/IEEE Monterey. IEEE pp 1–4
24.
Zurück zum Zitat Py O, Hong H, Zhongzhi S (2016) Plankton classification with deep convolutional neural networks. In: 2016 IEEE information technology, networking, electronic and automation control conference. IEEE, pp 132–136 Py O, Hong H, Zhongzhi S (2016) Plankton classification with deep convolutional neural networks. In: 2016 IEEE information technology, networking, electronic and automation control conference. IEEE, pp 132–136
25.
Zurück zum Zitat Rawat S.S, Bisht A, Nijhawan R (2019) A deep learning based cnn framework approach for plankton classification. In: 2019 fifth international conference on image information processing (ICIIP). IEEE, pp 268–273 Rawat S.S, Bisht A, Nijhawan R (2019) A deep learning based cnn framework approach for plankton classification. In: 2019 fifth international conference on image information processing (ICIIP). IEEE, pp 268–273
26.
Zurück zum Zitat Lampert CH, Nickisch H, Harmeling S (2014) Attribute-based classification for zero-shot visual object categorization. IEEE Trans Pattern Anal Mach Intell 36(3):453–465CrossRef Lampert CH, Nickisch H, Harmeling S (2014) Attribute-based classification for zero-shot visual object categorization. IEEE Trans Pattern Anal Mach Intell 36(3):453–465CrossRef
27.
Zurück zum Zitat Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on empirical methods in natural language processing (EMNLP). pp 1532–1543 Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on empirical methods in natural language processing (EMNLP). pp 1532–1543
28.
Zurück zum Zitat Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th international conference on neural information processing systems. Vol. 2, pp 3111–3119 Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th international conference on neural information processing systems. Vol. 2, pp 3111–3119
29.
Zurück zum Zitat Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38(11):39–41CrossRef Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38(11):39–41CrossRef
30.
Zurück zum Zitat Wang W, Zheng VW, Yu H, Miao C (2019) A survey of zero-shot learning: settings, methods, and applications. ACM Trans Intell Syst Technol (TIST) 10(2):1–37 Wang W, Zheng VW, Yu H, Miao C (2019) A survey of zero-shot learning: settings, methods, and applications. ACM Trans Intell Syst Technol (TIST) 10(2):1–37
31.
Zurück zum Zitat Huang C, Loy C.C, Tang X (2016) Local similarity-aware deep feature embedding. In: Proceedings of the 30th international conference on neural information processing systems. pp 1270–1278 Huang C, Loy C.C, Tang X (2016) Local similarity-aware deep feature embedding. In: Proceedings of the 30th international conference on neural information processing systems. pp 1270–1278
32.
Zurück zum Zitat Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado GS, Dean J (2014) Zero-shot learning by convex combination of semantic embeddings. The 2nd International Conference on Learning Representations, ICLR 2014 Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado GS, Dean J (2014) Zero-shot learning by convex combination of semantic embeddings. The 2nd International Conference on Learning Representations, ICLR 2014
33.
Zurück zum Zitat Kodirov E, Xiang T, Gong S (2017) Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3174–3183 Kodirov E, Xiang T, Gong S (2017) Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3174–3183
34.
Zurück zum Zitat Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-scale object classification using label relation graphs. In: European conference on computer vision. Springer, pp 48–64 Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam H (2014) Large-scale object classification using label relation graphs. In: European conference on computer vision. Springer, pp 48–64
35.
Zurück zum Zitat Leksut JT, Zhao J, Itti L (2020) Learning visual variation for object recognition. Image Vis Comput 98:103912CrossRef Leksut JT, Zhao J, Itti L (2020) Learning visual variation for object recognition. Image Vis Comput 98:103912CrossRef
36.
Zurück zum Zitat Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx Reason 50(7):969–978CrossRef Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx Reason 50(7):969–978CrossRef
37.
Zurück zum Zitat Wang X, Ye Y, Gupta A (2018) Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 6857–6866 Wang X, Ye Y, Gupta A (2018) Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 6857–6866
39.
Zurück zum Zitat Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326(6114):655–661CrossRef Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326(6114):655–661CrossRef
40.
Zurück zum Zitat Farhadi A, Endres I, Hoiem D, Forsyth D (2009) Describing objects by their attributes. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1778–1785 Farhadi A, Endres I, Hoiem D, Forsyth D (2009) Describing objects by their attributes. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1778–1785
41.
Zurück zum Zitat Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) The caltech-ucsd birds-200-2011 dataset. Adv Water Resour Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) The caltech-ucsd birds-200-2011 dataset. Adv Water Resour
42.
Zurück zum Zitat Patterson G, Xu C, Su H, Hays J (2014) The sun attribute database: beyond categories for deeper scene understanding. Int J Comput Vis 108(1–2):59–81CrossRef Patterson G, Xu C, Su H, Hays J (2014) The sun attribute database: beyond categories for deeper scene understanding. Int J Comput Vis 108(1–2):59–81CrossRef
43.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778
44.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
46.
Zurück zum Zitat Lampert CH, Nickisch H, Harmeling S (2008) Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 951–958 Lampert CH, Nickisch H, Harmeling S (2008) Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 951–958
47.
Zurück zum Zitat Akata Z, Reed S, Walter D, Lee H, Schiele B (2015) Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2927–2936 Akata Z, Reed S, Walter D, Lee H, Schiele B (2015) Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2927–2936
48.
Zurück zum Zitat Zhang Z, Saligrama V (2015) Zero-shot learning via semantic similarity embedding. In: Proceedings of the IEEE international conference on computer vision. pp 4166–4174 Zhang Z, Saligrama V (2015) Zero-shot learning via semantic similarity embedding. In: Proceedings of the IEEE international conference on computer vision. pp 4166–4174
Metadaten
Titel
Dual autoencoder based zero shot learning in special domain
verfasst von
Qiong Li
Eric Rigall
Xin Sun
Kin Man Lam
Junyu Dong
Publikationsdatum
06.10.2022
Verlag
Springer London
Erschienen in
Pattern Analysis and Applications / Ausgabe 2/2023
Print ISSN: 1433-7541
Elektronische ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-022-01109-9

Weitere Artikel der Ausgabe 2/2023

Pattern Analysis and Applications 2/2023 Zur Ausgabe

Premium Partner