Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2009

01.06.2009 | Research Article

Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics

verfasst von: Kimitaka Kaneki, Osamu Araki, Minoru Tsukada

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We assume that Hebbian learning dynamics (HLD) and spatiotemporal learning dynamics (SLD) are involved in the mechanism of synaptic plasticity in the hippocampal neurons. While HLD is driven by pre- and postsynaptic spike timings through the backpropagating action potential, SLD is evoked by presynaptic spike timings alone. Since the backpropagation attenuates as it nears the distal dendrites, we assume an extreme case as a neuron model where HLD exists only at proximal dendrites and SLD exists only at the distal dendrites. We examined how the synaptic weights change in response to three types of synaptic inputs in computer simulations. First, in response to a Poisson train having a constant mean frequency, the synaptic weights in HLD and SLD are qualitatively similar. Second, SLD responds more rapidly than HLD to synchronous input patterns, while each responds to them. Third, HLD responds more rapidly to more frequent inputs, while SLD shows fluctuating synaptic weights. These results suggest an encoding hypothesis in that a transient synchronous structure in spatiotemporal input patterns will be encoded into distal dendrites through SLD and that persistent synchrony or firing rate information will be encoded into proximal dendrites through HLD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aihara T, Tsukada M, Crair MC, Shinomoto S (1997) Stimulus-dependent induction of long-term potentiation in CA1 area of the hippocampus: experiment and model. Hippocampus 7:416–426PubMedCrossRef Aihara T, Tsukada M, Crair MC, Shinomoto S (1997) Stimulus-dependent induction of long-term potentiation in CA1 area of the hippocampus: experiment and model. Hippocampus 7:416–426PubMedCrossRef
Zurück zum Zitat Aihara T, Tsukada M, Matsuda H (2000) Two dynamic processes for the induction of long-term potentiation in hippocampal CA1 neurons. Biol Cybern 82:189–195PubMedCrossRef Aihara T, Tsukada M, Matsuda H (2000) Two dynamic processes for the induction of long-term potentiation in hippocampal CA1 neurons. Biol Cybern 82:189–195PubMedCrossRef
Zurück zum Zitat Aihara T, Kobayashi Y, Tsukada M (2005) Spatiotemporal visualization of long-term potentiation and depression in the hippocampal CA1 area. Hippocampus 15:68–78PubMedCrossRef Aihara T, Kobayashi Y, Tsukada M (2005) Spatiotemporal visualization of long-term potentiation and depression in the hippocampal CA1 area. Hippocampus 15:68–78PubMedCrossRef
Zurück zum Zitat Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 13:1178–1183CrossRef Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 13:1178–1183CrossRef
Zurück zum Zitat Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130PubMedCrossRef Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19:126–130PubMedCrossRef
Zurück zum Zitat Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11PubMedCrossRef Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11PubMedCrossRef
Zurück zum Zitat Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMed Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMed
Zurück zum Zitat Daoudal G, Hanada Y, Debanne D (2002) Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:14512–14517PubMedCrossRef Daoudal G, Hanada Y, Debanne D (2002) Bidirectional plasticity of excitatory postsynaptic potential (EPSP)-spike coupling in CA1 hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:14512–14517PubMedCrossRef
Zurück zum Zitat Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedCrossRef Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433–438PubMedCrossRef
Zurück zum Zitat Golding NL, Staff NP (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86:2998–3010PubMed Golding NL, Staff NP (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86:2998–3010PubMed
Zurück zum Zitat Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418:326–331PubMedCrossRef
Zurück zum Zitat Hebb DO (1949) The organization behaviour. Wiley, New York Hebb DO (1949) The organization behaviour. Wiley, New York
Zurück zum Zitat Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875PubMedCrossRef Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875PubMedCrossRef
Zurück zum Zitat LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917PubMedCrossRef LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917PubMedCrossRef
Zurück zum Zitat Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567PubMedCrossRef Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567PubMedCrossRef
Zurück zum Zitat Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRef Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213PubMedCrossRef
Zurück zum Zitat Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRef Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRef
Zurück zum Zitat Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRef Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRef
Zurück zum Zitat Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588PubMedCrossRef Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408:584–588PubMedCrossRef
Zurück zum Zitat Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278PubMedCrossRef Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278PubMedCrossRef
Zurück zum Zitat Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–723PubMedCrossRef Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–723PubMedCrossRef
Zurück zum Zitat Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–1164PubMedCrossRef
Zurück zum Zitat Song S, Miller KD, Abbot LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity. Nat Neurosci 3:919–926PubMedCrossRef Song S, Miller KD, Abbot LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity. Nat Neurosci 3:919–926PubMedCrossRef
Zurück zum Zitat Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71PubMedCrossRef Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4:63–71PubMedCrossRef
Zurück zum Zitat Tsukada M, Pan X (2005) The spatio-temporal learning rule and its efficiency in separating spatio-temporal patterns. Biol Cybern 92:139–146PubMedCrossRef Tsukada M, Pan X (2005) The spatio-temporal learning rule and its efficiency in separating spatio-temporal patterns. Biol Cybern 92:139–146PubMedCrossRef
Zurück zum Zitat Tsukada M, Aihara T, Mizuno M, Kato H, Ito K (1994) Temporal pattern sensitivity of long-term potentiation in hippocampal CA1 neurons. Biol Cybern 70:495–503PubMedCrossRef Tsukada M, Aihara T, Mizuno M, Kato H, Ito K (1994) Temporal pattern sensitivity of long-term potentiation in hippocampal CA1 neurons. Biol Cybern 70:495–503PubMedCrossRef
Zurück zum Zitat Tsukada M, Aihara T, Saito H, Kato H (1996) Hippocampal LTP depends on spatio and temporal correlation of inputs. Neural Netw 9:1357–1365PubMedCrossRef Tsukada M, Aihara T, Saito H, Kato H (1996) Hippocampal LTP depends on spatio and temporal correlation of inputs. Neural Netw 9:1357–1365PubMedCrossRef
Zurück zum Zitat Tsukada M, Aihara T, Kobayashi Y, Shimazaki H (2005) Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15:104–109PubMedCrossRef Tsukada M, Aihara T, Kobayashi Y, Shimazaki H (2005) Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging. Hippocampus 15:104–109PubMedCrossRef
Zurück zum Zitat Tsukada M, Yamazaki Y, Kojima H (2007) Interaction between the spatiotemporal learning rule (STLR) and Hebb type (HEBB) in single pyramidal cells in the hippocampal CA1 area. Cogn Neurodyn 1:157–167PubMedCrossRef Tsukada M, Yamazaki Y, Kojima H (2007) Interaction between the spatiotemporal learning rule (STLR) and Hebb type (HEBB) in single pyramidal cells in the hippocampal CA1 area. Cogn Neurodyn 1:157–167PubMedCrossRef
Zurück zum Zitat Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quanta amplitude in neocortical neurons. Nature 391:892-896PubMedCrossRef Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quanta amplitude in neocortical neurons. Nature 391:892-896PubMedCrossRef
Zurück zum Zitat van Rossum MCW, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821PubMed van Rossum MCW, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821PubMed
Metadaten
Titel
Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics
verfasst von
Kimitaka Kaneki
Osamu Araki
Minoru Tsukada
Publikationsdatum
01.06.2009
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2009
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-008-9071-z

Weitere Artikel der Ausgabe 2/2009

Cognitive Neurodynamics 2/2009 Zur Ausgabe

Neuer Inhalt