Skip to main content
Erschienen in: International Journal of Geosynthetics and Ground Engineering 5/2022

01.10.2022 | Original Paper

Durability of Peat Stabilized with RHA-Based Geopolymer Formed by Adding Pure Alumina

verfasst von: Suhail Ahmad Khanday, Dinesh Ahongshangbam, Monowar Hussain

Erschienen in: International Journal of Geosynthetics and Ground Engineering | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There has been no research done on the influence of freezing–thawing (F–T) on the durability and engineering properties of RHA-based geopolymer stabilized peat. Therefore, this present study aimed to analyze the effect of F–T cycles on physical, mechanical, and mineralogical properties of sapric and hemic peat stabilized by RHA Based geopolymer. For comparison, ordinary Portland cement (cement) stabilized peat was used as the control sample. The sapric and hemic peats stabilized with RHA-based geopolymer and cement were separately subjected to 10 F–T cycles. The experimental results show that RHA-based geopolymer treated sapric and hemic peats have greater UCS values of 2.1 and 1.96 times, respectively, than cement-treated sapric and hemic peats after 28 days of curing, respectively. It was also found that irrespective of the type of peat and binder, the strength of the specimens kept decreasing with F–T cycles. However, the rate of decrease of UCS of RHA-based geopolymer-treated peats is less than cement-treated peats with F–T cycles. Further, RHA-based geopolymer stabilized peats have shown lesser mass loss and volume change with higher residual strength as compared to cement-treated peats. The results were supported by field emission scanning electron microscope (FESEM) micrographs that reveal the presence of smooth and dense cementitious materials before the F–T cycles and the presence of voids and microcracks after the F–T cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kalantari B, Prasad A, Huat BBK (2013) Cement and silica fume treated columns to improve peat ground. Arab J Sci Eng 38:805–816CrossRef Kalantari B, Prasad A, Huat BBK (2013) Cement and silica fume treated columns to improve peat ground. Arab J Sci Eng 38:805–816CrossRef
2.
Zurück zum Zitat Blom C, Van de Steeg HM, Voesenek L (2017) Adaptive mechanisms of plants occurring in wetland gradients. Wetlands. CRC Press, pp 91–112CrossRef Blom C, Van de Steeg HM, Voesenek L (2017) Adaptive mechanisms of plants occurring in wetland gradients. Wetlands. CRC Press, pp 91–112CrossRef
3.
Zurück zum Zitat Khanday SA, Hussain M, Das AK (2021) Stabilization of Indian peat using alkali-activated ground granulated blast furnace slag. Bull Eng Geol Environ 80:1–13CrossRef Khanday SA, Hussain M, Das AK (2021) Stabilization of Indian peat using alkali-activated ground granulated blast furnace slag. Bull Eng Geol Environ 80:1–13CrossRef
4.
Zurück zum Zitat Paul A, Hussain M, Ramu B (2018) The physicochemical properties and microstructural characteristics of peat and their correlations: reappraisal. Int J Geotech Eng 15:1–12 Paul A, Hussain M, Ramu B (2018) The physicochemical properties and microstructural characteristics of peat and their correlations: reappraisal. Int J Geotech Eng 15:1–12
5.
Zurück zum Zitat Khanday SA, Hussain M, Das AK (2021) A review on chemical stabilization of peat. Geotech Geol Eng 39:1–15CrossRef Khanday SA, Hussain M, Das AK (2021) A review on chemical stabilization of peat. Geotech Geol Eng 39:1–15CrossRef
6.
Zurück zum Zitat Khanday SA, Hussain M, Das AK (2021) Rice husk ash-based geopolymer stabilization of Indian peat: experimental investigation. J Mater Civ Eng 33:4021347CrossRef Khanday SA, Hussain M, Das AK (2021) Rice husk ash-based geopolymer stabilization of Indian peat: experimental investigation. J Mater Civ Eng 33:4021347CrossRef
8.
Zurück zum Zitat Edil TB (2003) Recent advances in geotechnical characterization and construction over peats and organic soils. In: Proceedings of the 2nd International Conference in Soft Soil Engineering and Technology, Putrajaya, Malaysia Edil TB (2003) Recent advances in geotechnical characterization and construction over peats and organic soils. In: Proceedings of the 2nd International Conference in Soft Soil Engineering and Technology, Putrajaya, Malaysia
9.
Zurück zum Zitat Deboucha S, Hashim R (2009) Durability and swelling of tropical stabilized peat soils. J Appl Sci 9:2480–2484CrossRef Deboucha S, Hashim R (2009) Durability and swelling of tropical stabilized peat soils. J Appl Sci 9:2480–2484CrossRef
10.
Zurück zum Zitat Kazemian S, Prasad A, Huat BBK et al (2012) Effects of cement–sodium silicate system grout on tropical organic soils. Arab J Sci Eng 37:2137–2148CrossRef Kazemian S, Prasad A, Huat BBK et al (2012) Effects of cement–sodium silicate system grout on tropical organic soils. Arab J Sci Eng 37:2137–2148CrossRef
11.
Zurück zum Zitat EuroSoilStab (2002) Development of design and construction methods to stabilize soft organic soils: design guide soft soil stabilization. CT97-0351 Proj No BE 96-3177, Ind Mater Technol Program (Brite- EuRam III), Eur Comm EuroSoilStab (2002) Development of design and construction methods to stabilize soft organic soils: design guide soft soil stabilization. CT97-0351 Proj No BE 96-3177, Ind Mater Technol Program (Brite- EuRam III), Eur Comm
12.
Zurück zum Zitat Rahman ZA, Sulaiman N, Rahim SA et al (2016) Effect of cement additive and curing period on some engineering properties of treated peat soil. Sains Malaysiana 45:1679–1687 Rahman ZA, Sulaiman N, Rahim SA et al (2016) Effect of cement additive and curing period on some engineering properties of treated peat soil. Sains Malaysiana 45:1679–1687
13.
Zurück zum Zitat Dehghanbanadaki A, Arefnia A, Keshtkarbanaeemoghadam A et al (2017) Evaluating the compression index of fibrous peat treated with different binders. Bull Eng Geol Environ 76:575–586CrossRef Dehghanbanadaki A, Arefnia A, Keshtkarbanaeemoghadam A et al (2017) Evaluating the compression index of fibrous peat treated with different binders. Bull Eng Geol Environ 76:575–586CrossRef
14.
Zurück zum Zitat Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A review. J Clean Prod 251:119679CrossRef Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A review. J Clean Prod 251:119679CrossRef
15.
Zurück zum Zitat Nimwinya E, Arjharn W, Horpibulsuk S et al (2016) A sustainable calcined water treatment sludge and rice husk ash geopolymer. J Clean Prod 119:128–134CrossRef Nimwinya E, Arjharn W, Horpibulsuk S et al (2016) A sustainable calcined water treatment sludge and rice husk ash geopolymer. J Clean Prod 119:128–134CrossRef
16.
Zurück zum Zitat Du Y-J, Bo Y-L, Jin F, Liu C-Y (2016) Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying–wetting cycle. Eur J Environ Civ Eng 20:215–230CrossRef Du Y-J, Bo Y-L, Jin F, Liu C-Y (2016) Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying–wetting cycle. Eur J Environ Civ Eng 20:215–230CrossRef
17.
Zurück zum Zitat Thomas BS (2018) Green concrete partially comprised of rice husk ash as a supplementary cementitious material—a comprehensive review. Renew Sustain Energy Rev 82:3913–3923CrossRef Thomas BS (2018) Green concrete partially comprised of rice husk ash as a supplementary cementitious material—a comprehensive review. Renew Sustain Energy Rev 82:3913–3923CrossRef
18.
Zurück zum Zitat Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod 264:121744CrossRef Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod 264:121744CrossRef
19.
Zurück zum Zitat Nair DG, Jagadish KS, Fraaij A (2006) Reactive pozzolanas from rice husk ash: an alternative to cement for rural housing. Cem Concr Res 36:1062–1071CrossRef Nair DG, Jagadish KS, Fraaij A (2006) Reactive pozzolanas from rice husk ash: an alternative to cement for rural housing. Cem Concr Res 36:1062–1071CrossRef
20.
Zurück zum Zitat Paul A, Hussain M (2020) Sustainable use of GGBS and RHA as a partial replacement of cement in the stabilization of Indian peat. Int J Geosynth Gr Eng 6:1–15 Paul A, Hussain M (2020) Sustainable use of GGBS and RHA as a partial replacement of cement in the stabilization of Indian peat. Int J Geosynth Gr Eng 6:1–15
21.
Zurück zum Zitat Jongpradist P, Homtragoon W, Sukkarak R et al (2018) Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay. Adv Civ Eng 2018:1–11CrossRef Jongpradist P, Homtragoon W, Sukkarak R et al (2018) Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay. Adv Civ Eng 2018:1–11CrossRef
22.
Zurück zum Zitat Sukkarak R, Thangjaroensuk B, Kongkitkul W, Jongpradist P (2021) Strength and equivalent modulus of cement stabilized lateritic with partial replacement by fly ash and rice husk ash. Eng J 25:13–25CrossRef Sukkarak R, Thangjaroensuk B, Kongkitkul W, Jongpradist P (2021) Strength and equivalent modulus of cement stabilized lateritic with partial replacement by fly ash and rice husk ash. Eng J 25:13–25CrossRef
23.
Zurück zum Zitat Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37:1633–1656CrossRef Davidovits J (1991) Geopolymers: inorganic polymeric new materials. J Therm Anal Calorim 37:1633–1656CrossRef
24.
Zurück zum Zitat ASTM (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618, West Conshohocken ASTM (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618, West Conshohocken
25.
Zurück zum Zitat Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44:832–839CrossRef Duxson P, Lukey GC, Separovic F, Van Deventer JSJ (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44:832–839CrossRef
26.
Zurück zum Zitat Garcia-Lodeiro I, Fernández-Jimenez A, Pena P, Palomo A (2014) Alkaline activation of synthetic aluminosilicate glass. Ceram Int 40:5547–5558CrossRef Garcia-Lodeiro I, Fernández-Jimenez A, Pena P, Palomo A (2014) Alkaline activation of synthetic aluminosilicate glass. Ceram Int 40:5547–5558CrossRef
27.
Zurück zum Zitat Singhi B, Laskar AI, Ahmed MA (2017) Mechanical behavior and sulfate resistance of alkali activated stabilized clayey soil. Geotech Geol Eng 35:1907–1920CrossRef Singhi B, Laskar AI, Ahmed MA (2017) Mechanical behavior and sulfate resistance of alkali activated stabilized clayey soil. Geotech Geol Eng 35:1907–1920CrossRef
28.
Zurück zum Zitat BIS (1973) Methods of test for soils: determination of water content. IS 2720 Part 2 2720: BIS (1973) Methods of test for soils: determination of water content. IS 2720 Part 2 2720:
29.
Zurück zum Zitat BIS (1985) Method of test for soils: determination of Atterberg limits. IS 2720 Part 5, New Delhi BIS (1985) Method of test for soils: determination of Atterberg limits. IS 2720 Part 5, New Delhi
30.
Zurück zum Zitat ASTM (2012) Standard test methods for laboratory com_paction characteristics of soil using standard effort. ASTM D698, West Conshohocken ASTM (2012) Standard test methods for laboratory com_paction characteristics of soil using standard effort. ASTM D698, West Conshohocken
31.
Zurück zum Zitat BIS (1975) Method of test for soils: determination of dry density of soils in-place by the core-cutter method. IS 2720 Part 29, New Delhi BIS (1975) Method of test for soils: determination of dry density of soils in-place by the core-cutter method. IS 2720 Part 29, New Delhi
32.
Zurück zum Zitat ASTM (2014) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM D2974, West Conshohocken ASTM (2014) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM D2974, West Conshohocken
33.
Zurück zum Zitat ASTM (2013) Standard test method for laboratory determination of the fibre content of peat samples by dry mass. ASTM D1997, West Conshohocken ASTM (2013) Standard test method for laboratory determination of the fibre content of peat samples by dry mass. ASTM D1997, West Conshohocken
34.
Zurück zum Zitat ASTM (2015) Standard test method for pH of peat materials. ASTM D2976, West Conshohocken ASTM (2015) Standard test method for pH of peat materials. ASTM D2976, West Conshohocken
35.
Zurück zum Zitat BIS (1991) Method of test for soils: laboratory determination of unconfined compressive strength. IS2720 Part 10, New Delhi BIS (1991) Method of test for soils: laboratory determination of unconfined compressive strength. IS2720 Part 10, New Delhi
36.
Zurück zum Zitat ASTM (2016) Standard test methods for freezing and thawing compacted soil-cement mixtures. ASTM D0560, West Conshohocken ASTM (2016) Standard test methods for freezing and thawing compacted soil-cement mixtures. ASTM D0560, West Conshohocken
37.
Zurück zum Zitat Yi Y, Li C, Liu S (2014) Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay. J Mater Civ Eng 27:4014146CrossRef Yi Y, Li C, Liu S (2014) Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay. J Mater Civ Eng 27:4014146CrossRef
38.
Zurück zum Zitat Paul A, Hussain M (2020) Cement stabilization of Indian peat: an experimental investigation. J Mater Civ Eng 32:4020350CrossRef Paul A, Hussain M (2020) Cement stabilization of Indian peat: an experimental investigation. J Mater Civ Eng 32:4020350CrossRef
39.
Zurück zum Zitat Lu Y, Liu S, Zhang Y et al (2020) Freeze-thaw performance of a cement-treated expansive soil. Cold Reg Sci Technol 170:102926CrossRef Lu Y, Liu S, Zhang Y et al (2020) Freeze-thaw performance of a cement-treated expansive soil. Cold Reg Sci Technol 170:102926CrossRef
40.
Zurück zum Zitat Skibsted J, Snellings R (2019) Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem Concr Res 124:105799CrossRef Skibsted J, Snellings R (2019) Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem Concr Res 124:105799CrossRef
41.
Zurück zum Zitat Chen J (2020) Development and performance of self-healing and self-immune soil-cement systems subjected to freeze-thaw cycles Chen J (2020) Development and performance of self-healing and self-immune soil-cement systems subjected to freeze-thaw cycles
42.
Zurück zum Zitat Han Y, Wang Q, Xia W et al (2020) Experimental study on the hydraulic conductivity of unsaturated dispersive soil with different salinities subjected to freeze-thaw. J Hydrol 583:124297CrossRef Han Y, Wang Q, Xia W et al (2020) Experimental study on the hydraulic conductivity of unsaturated dispersive soil with different salinities subjected to freeze-thaw. J Hydrol 583:124297CrossRef
43.
Zurück zum Zitat Liu H, Sun S, Wang L et al (2020) Microscopic mechanism of the macroscopic mechanical properties of cement modified subgrade Silty soil subjected to freeze-thaw cycles. Appl Sci 10:2182CrossRef Liu H, Sun S, Wang L et al (2020) Microscopic mechanism of the macroscopic mechanical properties of cement modified subgrade Silty soil subjected to freeze-thaw cycles. Appl Sci 10:2182CrossRef
44.
Zurück zum Zitat Ding M, Zhang F, Ling X, Lin B (2018) Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Reg Sci Technol 154:155–165CrossRef Ding M, Zhang F, Ling X, Lin B (2018) Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay. Cold Reg Sci Technol 154:155–165CrossRef
45.
Zurück zum Zitat Abdullah HH, Shahin MA, Sarker P (2019) Use of fly-ash geopolymer incorporating ground granulated slag for stabilisation of kaolin clay cured at ambient temperature. Geotech Geol Eng 37:721–740CrossRef Abdullah HH, Shahin MA, Sarker P (2019) Use of fly-ash geopolymer incorporating ground granulated slag for stabilisation of kaolin clay cured at ambient temperature. Geotech Geol Eng 37:721–740CrossRef
46.
Zurück zum Zitat Mozumder RA, Laskar AI, Hussain M (2017) Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr Build Mater 132:412–424CrossRef Mozumder RA, Laskar AI, Hussain M (2017) Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr Build Mater 132:412–424CrossRef
47.
Zurück zum Zitat Liang G, Zhu H, Li H et al (2021) Comparative study on the effects of rice husk ash and silica fume on the freezing resistance of metakaolin-based geopolymer. Constr Build Mater 293:123486CrossRef Liang G, Zhu H, Li H et al (2021) Comparative study on the effects of rice husk ash and silica fume on the freezing resistance of metakaolin-based geopolymer. Constr Build Mater 293:123486CrossRef
48.
Zurück zum Zitat Puppala AJ, Pokala SP, Intharasombat N, Williammee R (2007) Effects of organic matter on physical, strength, and volume change properties of compost amended expansive clay. J Geotech Geoenviron Eng 133:1449–1461CrossRef Puppala AJ, Pokala SP, Intharasombat N, Williammee R (2007) Effects of organic matter on physical, strength, and volume change properties of compost amended expansive clay. J Geotech Geoenviron Eng 133:1449–1461CrossRef
49.
Zurück zum Zitat Zhu H, Zhai M, Liang G et al (2021) Experimental study on the freezing resistance and microstructure of alkali-activated slag in the presence of rice husk ash. J Build Eng 38:102173CrossRef Zhu H, Zhai M, Liang G et al (2021) Experimental study on the freezing resistance and microstructure of alkali-activated slag in the presence of rice husk ash. J Build Eng 38:102173CrossRef
50.
Zurück zum Zitat Mahdi SN, Hossiney N, Abdullah MMAB (2022) Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud Constr Mater 16:e00800 Mahdi SN, Hossiney N, Abdullah MMAB (2022) Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud Constr Mater 16:e00800
51.
Zurück zum Zitat Kong X, Cui S, Wang G et al (2022) Evolution law and mechanism of freeze-thaw damage of cement-stabilized weathered sand. Coatings 12:272CrossRef Kong X, Cui S, Wang G et al (2022) Evolution law and mechanism of freeze-thaw damage of cement-stabilized weathered sand. Coatings 12:272CrossRef
Metadaten
Titel
Durability of Peat Stabilized with RHA-Based Geopolymer Formed by Adding Pure Alumina
verfasst von
Suhail Ahmad Khanday
Dinesh Ahongshangbam
Monowar Hussain
Publikationsdatum
01.10.2022
Verlag
Springer International Publishing
Erschienen in
International Journal of Geosynthetics and Ground Engineering / Ausgabe 5/2022
Print ISSN: 2199-9260
Elektronische ISSN: 2199-9279
DOI
https://doi.org/10.1007/s40891-022-00399-7

Weitere Artikel der Ausgabe 5/2022

International Journal of Geosynthetics and Ground Engineering 5/2022 Zur Ausgabe