Skip to main content
Erschienen in: Acta Mechanica 11/2020

31.08.2020 | Original Paper

Dynamic analogy between Timoshenko and Euler–Bernoulli beams

verfasst von: M. A. De Rosa, M. Lippiello, G. Armenio, G. De Biase, S. Savalli

Erschienen in: Acta Mechanica | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel analytically method for analyzing the dynamic behavior of beams, under different boundary conditions and in presence of cracks, is proposed. Applying the Timoshenko beam theory and introducing the auxiliary functions, the equation of motion is derived using the Hamiltonian approach. The natural frequencies are obtained by applying the Euler–Bernoulli method and are derived by the corresponding auxiliary functions of the governing equation of the Euler–Bernoulli beam in free vibration. In order to demonstrate the efficiency of the proposed approach, typical results are presented and compared with some results available in the literature. Different boundary conditions were considered, and natural frequencies were calculated and compared. It is shown that very good results are obtained. This approach is very effective for the study of the vibration problem of Timoshenko beams. The novelty of the proposed approach is that although the auxiliary functions are different for the two theories, in both cases the dynamic problem is traced to the study of an Euler–Bernoulli beam subjected to an axial load.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Avcar, M.: Free vibration analysis of beams considering different geometric characteristics and boundary conditions. J. Mech. Appl. 4(3), 94–100 (2014) Avcar, M.: Free vibration analysis of beams considering different geometric characteristics and boundary conditions. J. Mech. Appl. 4(3), 94–100 (2014)
2.
Zurück zum Zitat Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B 51, 175–84 (2013) Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B 51, 175–84 (2013)
3.
Zurück zum Zitat Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B 42, 801–808 (2011) Shahba, A., Attarnejad, R., Marvi, M.T., Hajilar, S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B 42, 801–808 (2011)
4.
Zurück zum Zitat Rayleigh, J.: The Theory of Sound, 2nd edn. Macmillan, New York (1894)MATH Rayleigh, J.: The Theory of Sound, 2nd edn. Macmillan, New York (1894)MATH
5.
Zurück zum Zitat Grant, D.A.: The effect of rotary inertia and shear deformation on the frequency and normal mode equations of uniform beams carrying a concentrated mass. J. Sound Vib. 57(3), 357–365 (1978)MATH Grant, D.A.: The effect of rotary inertia and shear deformation on the frequency and normal mode equations of uniform beams carrying a concentrated mass. J. Sound Vib. 57(3), 357–365 (1978)MATH
6.
Zurück zum Zitat Avcar, M.: Effects of rotary inertia shear deformation and nonhomogeneity on frequencies of beam. Struct. Eng. Mech. 55(4), 871–884 (2015) Avcar, M.: Effects of rotary inertia shear deformation and nonhomogeneity on frequencies of beam. Struct. Eng. Mech. 55(4), 871–884 (2015)
7.
Zurück zum Zitat Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921) Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. 41(245), 744–746 (1921)
8.
Zurück zum Zitat Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-sections. Philos. Mag. 43, 125–31 (1922) Timoshenko, S.P.: On the transverse vibrations of bars of uniform cross-sections. Philos. Mag. 43, 125–31 (1922)
9.
Zurück zum Zitat Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta Mech. 91, 1–9 (1992)MATH Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta Mech. 91, 1–9 (1992)MATH
10.
Zurück zum Zitat Irschik, H.: Membrane-type eigenmotions of Mindlin plates. Acta Mech. 55, 1–20 (1985)MATH Irschik, H.: Membrane-type eigenmotions of Mindlin plates. Acta Mech. 55, 1–20 (1985)MATH
11.
Zurück zum Zitat Irschik, H., Heuer, R.: Analogies for simply supported nonlocal Kirchhoff plates of polygonal planform. Acta Mech. 229, 867–879 (2018)MathSciNetMATH Irschik, H., Heuer, R.: Analogies for simply supported nonlocal Kirchhoff plates of polygonal planform. Acta Mech. 229, 867–879 (2018)MathSciNetMATH
12.
Zurück zum Zitat Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–64 (2002) Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–64 (2002)
13.
Zurück zum Zitat Vinod, K.G., Gopalkrishnan, S., Ganguli, R.: Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J. Solids Struct. 44, 5875–5893 (2007)MATH Vinod, K.G., Gopalkrishnan, S., Ganguli, R.: Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements. Int J. Solids Struct. 44, 5875–5893 (2007)MATH
14.
Zurück zum Zitat Gunda, J.B., Ganguli, R.: New rational interpolation functions for finite element analysis of rotating beams. Int. J. Mech. Sci. 50, 578–588 (2008) MATHCrossRef Gunda, J.B., Ganguli, R.: New rational interpolation functions for finite element analysis of rotating beams. Int. J. Mech. Sci. 50, 578–588 (2008) MATHCrossRef
15.
Zurück zum Zitat De Rosa, M.A., Lippiello, M.: Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on nonlocal Euler-Bernoulli beam theory. Sci. World J. 2014, 1–13 (2014) De Rosa, M.A., Lippiello, M.: Free vibration analysis of DWCNTs using CDM and Rayleigh-Schmidt based on nonlocal Euler-Bernoulli beam theory. Sci. World J. 2014, 1–13 (2014)
16.
Zurück zum Zitat De Rosa, M.A., Lippiello, M.: Natural vibration frequencies of tapered beams. Eng. Trans. 57(1), 44–66 (2009) De Rosa, M.A., Lippiello, M.: Natural vibration frequencies of tapered beams. Eng. Trans. 57(1), 44–66 (2009)
17.
Zurück zum Zitat Auciello, N.M., Lippiello, M.: Vibration analysis of rotating non-uniform Rayleigh beams using “CDM” method. News Eng. 1(1), 1–6 (2013) Auciello, N.M., Lippiello, M.: Vibration analysis of rotating non-uniform Rayleigh beams using “CDM” method. News Eng. 1(1), 1–6 (2013)
18.
Zurück zum Zitat Nassar, M., Matbuly, M.S., Ragb, O.: Vibration analysis of structural elements using differential quadrature method. J. Adv. Res. 4(1), 93–102 (2013)CrossRef Nassar, M., Matbuly, M.S., Ragb, O.: Vibration analysis of structural elements using differential quadrature method. J. Adv. Res. 4(1), 93–102 (2013)CrossRef
19.
Zurück zum Zitat Laura, P.A.A., Gutierrez, R.H.: Analysis of vibrating Timoshenko beams using the method of differential quadrature. Shock Vib. 1(1), 89–93 (1993)CrossRef Laura, P.A.A., Gutierrez, R.H.: Analysis of vibrating Timoshenko beams using the method of differential quadrature. Shock Vib. 1(1), 89–93 (1993)CrossRef
20.
Zurück zum Zitat Felix, D.H., Bambill, D.V., Rossi, C.A.: Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method. Struct. Eng. Mech. 34(2), 231–245 (2010) Felix, D.H., Bambill, D.V., Rossi, C.A.: Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method. Struct. Eng. Mech. 34(2), 231–245 (2010)
21.
Zurück zum Zitat Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H., Ratazzi, A.R.: Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6), 1289–1311 (2013)MathSciNetMATH Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H., Ratazzi, A.R.: Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48(6), 1289–1311 (2013)MathSciNetMATH
22.
Zurück zum Zitat Rajesh, K., Saheb, K.M.: Large amplitude free vibration analysis of tapered Timoshenko beams using coupled displacement field method. Int. J. Appl. Mech. Eng. 23(3), 673–688 (2018) Rajesh, K., Saheb, K.M.: Large amplitude free vibration analysis of tapered Timoshenko beams using coupled displacement field method. Int. J. Appl. Mech. Eng. 23(3), 673–688 (2018)
23.
Zurück zum Zitat Ramazan, A., Jafari-Talookolaei, Abedi M: An exact solution for the free vibration analysis of Timoshenko beams. Rev. Appl. Phys. 3, 12–17 (2014) Ramazan, A., Jafari-Talookolaei, Abedi M: An exact solution for the free vibration analysis of Timoshenko beams. Rev. Appl. Phys. 3, 12–17 (2014)
24.
Zurück zum Zitat Nikolic, A., Salinic, S.: A rigid multibody method for free vibration analysis of beams with variable axial parameters. J. Vib. Control 23(1), 131–46 (2017)MathSciNet Nikolic, A., Salinic, S.: A rigid multibody method for free vibration analysis of beams with variable axial parameters. J. Vib. Control 23(1), 131–46 (2017)MathSciNet
25.
Zurück zum Zitat Krawczuk, M.: Natural vibration of cracked rotating beams. Acta Mech. 99, 35–48 (1993) Krawczuk, M.: Natural vibration of cracked rotating beams. Acta Mech. 99, 35–48 (1993)
26.
Zurück zum Zitat Lee, H.P., Ng, T.Y.: Dynamic response of a beam to a moving load. Acta Mech. 106, 221–230 (1994)MATH Lee, H.P., Ng, T.Y.: Dynamic response of a beam to a moving load. Acta Mech. 106, 221–230 (1994)MATH
27.
Zurück zum Zitat Shalei, M., Khaji, N.: Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject to a concentrated moving load. Acta Mech. 221, 79–97 (2011)MATH Shalei, M., Khaji, N.: Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject to a concentrated moving load. Acta Mech. 221, 79–97 (2011)MATH
28.
Zurück zum Zitat Alijani, A., Abadi, MKh, Razzaghi, J., Jamali, A.: Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam. Acta Mech. 230, 4391–4415 (2019)MathSciNet Alijani, A., Abadi, MKh, Razzaghi, J., Jamali, A.: Numerical analysis of natural frequency and stress intensity factor in Euler–Bernoulli cracked beam. Acta Mech. 230, 4391–4415 (2019)MathSciNet
29.
Zurück zum Zitat Elishakoff, I., Hache, F., Challamel, N.: Critical contrasting of three versions of vibrating Bresse–Timoshenko beam with a crack. Int. J. Solids Struct. 109, 143–151 (2017) Elishakoff, I., Hache, F., Challamel, N.: Critical contrasting of three versions of vibrating Bresse–Timoshenko beam with a crack. Int. J. Solids Struct. 109, 143–151 (2017)
30.
Zurück zum Zitat Irschik, H.: Analogy between refined beam theories and the Bernoulli–Euler theory. Int. J. Solids Struct. 28, 1105–12 (1991)MATH Irschik, H.: Analogy between refined beam theories and the Bernoulli–Euler theory. Int. J. Solids Struct. 28, 1105–12 (1991)MATH
31.
Zurück zum Zitat Irschik, H., Heuer, R., Ziegler, F.: Statics and dynamics of simply supported polygonal Reissner–Mindlin plates by analogy. Arch. Appl. Mech. 70, 231–44 (2000)MATH Irschik, H., Heuer, R., Ziegler, F.: Statics and dynamics of simply supported polygonal Reissner–Mindlin plates by analogy. Arch. Appl. Mech. 70, 231–44 (2000)MATH
32.
Zurück zum Zitat Wolfram, S.: The Mathematica 8. Cambridge University Press, Cambridge (2010) Wolfram, S.: The Mathematica 8. Cambridge University Press, Cambridge (2010)
33.
Zurück zum Zitat Khaji, N., Shafiei, M., Jalalpour, M.: Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. Int. J. Mech. Sci. 51, 667–681 (2009) Khaji, N., Shafiei, M., Jalalpour, M.: Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions. Int. J. Mech. Sci. 51, 667–681 (2009)
34.
Zurück zum Zitat Auciello, N.M., De Rosa, M.A., Lippiello, M.: Timoshenko free vibration analysis of non-uniform cracked beam via cell-discretization method (CDM), submitted Auciello, N.M., De Rosa, M.A., Lippiello, M.: Timoshenko free vibration analysis of non-uniform cracked beam via cell-discretization method (CDM), submitted
35.
Zurück zum Zitat Narkis, Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172(4), 549–558 (1994)MATH Narkis, Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172(4), 549–558 (1994)MATH
36.
Zurück zum Zitat Okamura, H., Liu, H.W., Chorn-Shin, C., Liebowitz, H.: A cracked column under compression. Eng. Fract. Mech. 1, 547–641 (1969)CrossRef Okamura, H., Liu, H.W., Chorn-Shin, C., Liebowitz, H.: A cracked column under compression. Eng. Fract. Mech. 1, 547–641 (1969)CrossRef
37.
Zurück zum Zitat Ruotolo, R., Surace, C., Mares, C.: Theoretical and experimental study of the dynamic behaviour of a double-cracked beam. In: Proceedings of 14th International Modal Analysis Conference, Dearborn, Michigan, USA, 1560–1564 (1996) Ruotolo, R., Surace, C., Mares, C.: Theoretical and experimental study of the dynamic behaviour of a double-cracked beam. In: Proceedings of 14th International Modal Analysis Conference, Dearborn, Michigan, USA, 1560–1564 (1996)
Metadaten
Titel
Dynamic analogy between Timoshenko and Euler–Bernoulli beams
verfasst von
M. A. De Rosa
M. Lippiello
G. Armenio
G. De Biase
S. Savalli
Publikationsdatum
31.08.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 11/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02795-4

Weitere Artikel der Ausgabe 11/2020

Acta Mechanica 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.