Skip to main content
Erschienen in: Fire Technology 6/2020

06.02.2020

Dynamic Heat Generation of LiNi0.5Co0.2Mn0.3O2 Half Cell Under Cycling Based on an In Situ Micro-calorimetry

verfasst von: Chen Liang, Lihua Jiang, Qingsong Wang, Jinhua Sun

Erschienen in: Fire Technology | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To further understand the thermal properties of lithium ion batteries, in situ measurement and calculation of the heat generation under operating condition are conducted. In this work, a novel micro-calorimeter with high accuracy is applied to study the heat flow of the LiNi0.5Co0.2Mn0.3O2/Li half cell. The dynamic heat generation and corresponding electrochemical data are detected out under isothermal environment from 30°C to 70°C with different current rates (0.2, 0.4, 0.6, 0.8 and 1.0 C) and electrode thicknesses (400, 200 and 100 μm). In addition, heat generation rate is calculated based on the measurement of entropy coefficient and internal resistance. It is found that the heat generation rises with the increase of thickness and current rate, due to concentration polarization and electrochemical polarization, respectively. The lithiation process is more sensitive to changes in current rate than delithiation. Appropriately increasing the temperature can improve the activity of material and reduce the energy consumption of the battery. Besides, the contribution of reversible heat to the overall heat generation should be taken into account especially at a lower current rate (< 0.5 C). The detailed analysis of heat generation and electrochemical performance can provide accurate data for thermal management systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131 Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131
2.
Zurück zum Zitat Omar N, Monem MA, Firouz Y, Salminen J, Smekens J, Hegazy O, Gaulous H, Mulder G, Van den Bossche P, Coosemans T (2014) Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model. Appl Energy 113:1575–1585 Omar N, Monem MA, Firouz Y, Salminen J, Smekens J, Hegazy O, Gaulous H, Mulder G, Van den Bossche P, Coosemans T (2014) Lithium iron phosphate based battery–assessment of the aging parameters and development of cycle life model. Appl Energy 113:1575–1585
3.
Zurück zum Zitat Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897 Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897
4.
Zurück zum Zitat Darcovich K, Henquin ER, Kenney B, Davidson I, Saldanha N, Beausoleil-Morrison I (2013) Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration. Appl Energy 111:853–861 Darcovich K, Henquin ER, Kenney B, Davidson I, Saldanha N, Beausoleil-Morrison I (2013) Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration. Appl Energy 111:853–861
5.
Zurück zum Zitat Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224 Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224
6.
Zurück zum Zitat Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25 Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25
7.
Zurück zum Zitat Du S, Lai Y, Ai L, Ai L, Cheng Y, Tang Y, Jia M (2017) An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method. Appl Therm Eng 121:501–510 Du S, Lai Y, Ai L, Ai L, Cheng Y, Tang Y, Jia M (2017) An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method. Appl Therm Eng 121:501–510
8.
Zurück zum Zitat Liu X, Wu Z, Stoliarov SI, Denlinger M, Masias A, Snyder K (2016) Heat release during thermally-induced failure of a lithium ion battery: impact of cathode composition. Fire Saf J 85:10–22 Liu X, Wu Z, Stoliarov SI, Denlinger M, Masias A, Snyder K (2016) Heat release during thermally-induced failure of a lithium ion battery: impact of cathode composition. Fire Saf J 85:10–22
9.
Zurück zum Zitat Jiang F, Liu K, Wang Z, Tong X, Guo L (2018) Theoretical analysis of lithium-ion battery failure characteristics under different states of charge. Fire Mater 42:680–686 Jiang F, Liu K, Wang Z, Tong X, Guo L (2018) Theoretical analysis of lithium-ion battery failure characteristics under different states of charge. Fire Mater 42:680–686
10.
Zurück zum Zitat Said AO, Lee C, Liu X, Wu Z, Stoliarov SI (2019) Simultaneous measurement of multiple thermal hazards associated with a failure of prismatic lithium ion battery. Proc Combust Inst 37:4173–4180 Said AO, Lee C, Liu X, Wu Z, Stoliarov SI (2019) Simultaneous measurement of multiple thermal hazards associated with a failure of prismatic lithium ion battery. Proc Combust Inst 37:4173–4180
11.
Zurück zum Zitat Sun Q, Wang Q, Zhao X, Sun J, Lin Z (2015) Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Convers Manag 92:184–193 Sun Q, Wang Q, Zhao X, Sun J, Lin Z (2015) Numerical study on lithium titanate battery thermal response under adiabatic condition. Energy Convers Manag 92:184–193
12.
Zurück zum Zitat Zhu C, Li X, Song L, Xiang L (2013) Development of a theoretically based thermal model for lithium ion battery pack. J Power Sour 223:155–164 Zhu C, Li X, Song L, Xiang L (2013) Development of a theoretically based thermal model for lithium ion battery pack. J Power Sour 223:155–164
13.
Zurück zum Zitat Saw L, Ye Y, Tay A (2013) Electrochemical–thermal analysis of 18650 lithium iron phosphate cell. Energy Convers Manag 75:162–174 Saw L, Ye Y, Tay A (2013) Electrochemical–thermal analysis of 18650 lithium iron phosphate cell. Energy Convers Manag 75:162–174
14.
Zurück zum Zitat Nazari A, Farhad S (2017) Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Appl Therm Eng 125:1501–1517 Nazari A, Farhad S (2017) Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Appl Therm Eng 125:1501–1517
15.
Zurück zum Zitat Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J (2016) Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim 124:417–428 Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J (2016) Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim 124:417–428
16.
Zurück zum Zitat Jiang J, Dahn J (2004) ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0.1Co0.8Mn0.1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun 6:39–43 Jiang J, Dahn J (2004) ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0.1Co0.8Mn0.1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun 6:39–43
17.
Zurück zum Zitat Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 73:51–65 Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 73:51–65
18.
Zurück zum Zitat Wang Q, Guo S, Sun J (2009) Spontaneous combustion prediction of coal by C80 and ARC techniques. Energy Fuels 23:4871–4876 Wang Q, Guo S, Sun J (2009) Spontaneous combustion prediction of coal by C80 and ARC techniques. Energy Fuels 23:4871–4876
19.
Zurück zum Zitat Gnanaraj J, Zinigrad E, Asraf L, Gottlieb H, Sprecher M, Aurbach D, Schmidt M (2003) The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions. J Power Sour 119:794–798 Gnanaraj J, Zinigrad E, Asraf L, Gottlieb H, Sprecher M, Aurbach D, Schmidt M (2003) The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions. J Power Sour 119:794–798
20.
Zurück zum Zitat Yang H, Prakash J (2004) Determination of the Reversible and Irreversible Heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc 151:A1222–A1229 Yang H, Prakash J (2004) Determination of the Reversible and Irreversible Heats of a LiNi0.8Co0.15Al0.05O2/natural graphite cell using electrochemical-calorimetric technique. J Electrochem Soc 151:A1222–A1229
21.
Zurück zum Zitat Lu W, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51:1322–1329 Lu W, Yang H, Prakash J (2006) Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery. Electrochim Acta 51:1322–1329
22.
Zurück zum Zitat Lu W, Prakash J (2003) In situ measurements of heat generation in a Li/mesocarbon microbead half-cell. J Electrochem Soc 150:A262–A266 Lu W, Prakash J (2003) In situ measurements of heat generation in a Li/mesocarbon microbead half-cell. J Electrochem Soc 150:A262–A266
23.
Zurück zum Zitat Lu W, Belharouak I, Vissers D, Amine K (2006) In situ thermal study of Li1 + x [Ni1/3Co1/3Mn1/3] 1–x O2 using isothermal micro-clorimetric techniques. J Electrochem Soc 153:A2147–A2151 Lu W, Belharouak I, Vissers D, Amine K (2006) In situ thermal study of Li1 + x [Ni1/3Co1/3Mn1/3] 1–x O2 using isothermal micro-clorimetric techniques. J Electrochem Soc 153:A2147–A2151
24.
Zurück zum Zitat Bandhauer TM, Garimella S, Fuller TF (2014) Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery. J Power Sources 247:618–628 Bandhauer TM, Garimella S, Fuller TF (2014) Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery. J Power Sources 247:618–628
25.
Zurück zum Zitat Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sour 195:2961–2968 Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C (2010) Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sour 195:2961–2968
26.
Zurück zum Zitat Xie Y, Shi S, Tang J, Wu H, Yu J (2018) Experimental and analytical study on heat generation characteristics of a lithium-ion power battery. Int J Heat Mass Transf 122:884–894 Xie Y, Shi S, Tang J, Wu H, Yu J (2018) Experimental and analytical study on heat generation characteristics of a lithium-ion power battery. Int J Heat Mass Transf 122:884–894
27.
Zurück zum Zitat Giel H, Henriques D, Bourne G, Markus T (2018) Investigation of the heat generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter. J Power Sour 390:116–126 Giel H, Henriques D, Bourne G, Markus T (2018) Investigation of the heat generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter. J Power Sour 390:116–126
28.
Zurück zum Zitat Liu X, Stoliarov SI, Denlinger M, Masias A, Snyder K (2015) Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery. J Power Sour 280:516–525 Liu X, Stoliarov SI, Denlinger M, Masias A, Snyder K (2015) Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery. J Power Sour 280:516–525
29.
Zurück zum Zitat Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sour 285:80–89 Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sour 285:80–89
30.
Zurück zum Zitat Lyon RE, Walters RN (2016) Energetics of lithium ion battery failure. J Hazard Mater 318:164–172 Lyon RE, Walters RN (2016) Energetics of lithium ion battery failure. J Hazard Mater 318:164–172
31.
Zurück zum Zitat Said AO, Lee C, Stoliarov SI, Marshall AW (2019) Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl Energy 248:415–428 Said AO, Lee C, Stoliarov SI, Marshall AW (2019) Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays. Appl Energy 248:415–428
32.
Zurück zum Zitat Wang Q, Sun J, Chen C, Zhou X (2008) Thermal properties and kinetics study of charged LiCoO2 by TG and C80 methods. J Therm Anal Calorim 92:563–566 Wang Q, Sun J, Chen C, Zhou X (2008) Thermal properties and kinetics study of charged LiCoO2 by TG and C80 methods. J Therm Anal Calorim 92:563–566
33.
Zurück zum Zitat Choi J, Manthiram A (2005) Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J Electrochem Soc 152:A1714–A1718 Choi J, Manthiram A (2005) Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J Electrochem Soc 152:A1714–A1718
34.
Zurück zum Zitat Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302 Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302
35.
Zurück zum Zitat Ullah A, Majid A, Rani N (2018) A review on first principles based studies for improvement of cathode material of lithium ion batteries. J Energy Chem 27:219–237 Ullah A, Majid A, Rani N (2018) A review on first principles based studies for improvement of cathode material of lithium ion batteries. J Energy Chem 27:219–237
36.
Zurück zum Zitat Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sour 233:121–130 Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sour 233:121–130
37.
Zurück zum Zitat Belharouak I, Sun Y-K, Liu J, Amine K (2003) Li (Ni1/3Co1/3Mn1/3) O2 as a suitable cathode for high power applications. J Power Sour 123:247–252 Belharouak I, Sun Y-K, Liu J, Amine K (2003) Li (Ni1/3Co1/3Mn1/3) O2 as a suitable cathode for high power applications. J Power Sour 123:247–252
38.
Zurück zum Zitat Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132:5–12 Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132:5–12
39.
Zurück zum Zitat Wu T, Chen H, Wang Q, Sun J (2018) Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater 344:733–741 Wu T, Chen H, Wang Q, Sun J (2018) Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater 344:733–741
40.
Zurück zum Zitat Jiang L, Wang Q, Sun J (2018) Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte. J Hazard Mater 351:260–269 Jiang L, Wang Q, Sun J (2018) Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte. J Hazard Mater 351:260–269
41.
Zurück zum Zitat Jiang F, Peng P, Sun Y (2013) Thermal analyses of LiFePO4/graphite battery discharge processes. J Power Sour 243:181–194 Jiang F, Peng P, Sun Y (2013) Thermal analyses of LiFePO4/graphite battery discharge processes. J Power Sour 243:181–194
42.
Zurück zum Zitat Lin C, Xu S, Li Z, Li B, Chang G, Liu J (2015) Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles. J Power Sour 294:633–642 Lin C, Xu S, Li Z, Li B, Chang G, Liu J (2015) Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles. J Power Sour 294:633–642
43.
Zurück zum Zitat Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilehto K, Skogström L, Paulasto-Kröckel M (2014) Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res 38:1424–1437 Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilehto K, Skogström L, Paulasto-Kröckel M (2014) Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res 38:1424–1437
Metadaten
Titel
Dynamic Heat Generation of LiNi0.5Co0.2Mn0.3O2 Half Cell Under Cycling Based on an In Situ Micro-calorimetry
verfasst von
Chen Liang
Lihua Jiang
Qingsong Wang
Jinhua Sun
Publikationsdatum
06.02.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 6/2020
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-00956-4

Weitere Artikel der Ausgabe 6/2020

Fire Technology 6/2020 Zur Ausgabe