Skip to main content
Erschienen in: International Journal of Steel Structures 2/2020

16.01.2020

Dynamic Instability Analysis of Axially Compressed Castellated Columns

verfasst von: Jin-song Lei, Boksun Kim, Long-yuan Li

Erschienen in: International Journal of Steel Structures | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an analytical study on the dynamic instability of castellated columns subjected to axial excitation loading. By assuming the instability modes, the kinetic energy and strain energy of the columns and the loss of the potential of the axially applied load are evaluated, from which the mass matrix, stiffness matrix, and geometric stiffness matrix of the system are derived. These matrices are then used for deriving dynamic equations and carrying out the analysis of dynamic instability of castellated columns by using Bolotin’s method. The analytical expression for determining the critical excitation frequency of the columns is derived, which takes account for not only the shear influence of web openings but also the rotary inertia effect on the transverse vibration of the columns. Numerical examples are also provided for illustrating the dynamic instability behaviour of castellated columns when subjected to axial excitation loading. The results show that the consideration of the shear effect in castellated columns results in a shaft of the dynamic instability zone to low frequency side and a reduction of the width of the dynamic instability zone. The shear effect on the dynamic instability zone becomes more significant in the short column than in the long column, and in the wide flange column than in the narrow flange column.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bolotin, V. V. (1964). The dynamic stability of elastic systems. San Francisco, CA: Holden-day Inc.MATH Bolotin, V. V. (1964). The dynamic stability of elastic systems. San Francisco, CA: Holden-day Inc.MATH
Zurück zum Zitat Chen, J. K., Kim, B., & Li, L. Y. (2014). Analytical approach for transverse vibration analysis of castellated beams. International Journal of Structural Stability and Dynamics,14(3), 1–13.MathSciNetCrossRef Chen, J. K., Kim, B., & Li, L. Y. (2014). Analytical approach for transverse vibration analysis of castellated beams. International Journal of Structural Stability and Dynamics,14(3), 1–13.MathSciNetCrossRef
Zurück zum Zitat Chen, L. Y., Lin, P. D., & Chen, L. W. (1991). Dynamic stability of thick bimodulus beams. Computers & Structures,41(2), 257–263.CrossRef Chen, L. Y., Lin, P. D., & Chen, L. W. (1991). Dynamic stability of thick bimodulus beams. Computers & Structures,41(2), 257–263.CrossRef
Zurück zum Zitat Ellobody, E. (2011). Interaction of buckling modes in castellated steel beams. Journal of Constructional Steel Research,67(5), 814–825.CrossRef Ellobody, E. (2011). Interaction of buckling modes in castellated steel beams. Journal of Constructional Steel Research,67(5), 814–825.CrossRef
Zurück zum Zitat El-Sawy, K., Sweedan, A., & Martini, M. (2009). Major-axis elastic buckling of axially loaded castellated steel columns. Thin-Walled Structures,47(11), 1295–1304.CrossRef El-Sawy, K., Sweedan, A., & Martini, M. (2009). Major-axis elastic buckling of axially loaded castellated steel columns. Thin-Walled Structures,47(11), 1295–1304.CrossRef
Zurück zum Zitat Gandomi, A. H., Tabatabaei, S. M., Moradian, M., Radfar, A., & Alavi, A. H. (2011). A new prediction model for the load capacity of castellated steel beams. Journal of Constructional Steel Research,67(7), 1096–1105.CrossRef Gandomi, A. H., Tabatabaei, S. M., Moradian, M., Radfar, A., & Alavi, A. H. (2011). A new prediction model for the load capacity of castellated steel beams. Journal of Constructional Steel Research,67(7), 1096–1105.CrossRef
Zurück zum Zitat Gholizadeh, S., Pirmoz, A., & Attarnejad, R. (2011). Assessment of load carrying capacity of castellated steel beams by neural networks. Journal of Constructional Steel Research,67(5), 770–779.CrossRef Gholizadeh, S., Pirmoz, A., & Attarnejad, R. (2011). Assessment of load carrying capacity of castellated steel beams by neural networks. Journal of Constructional Steel Research,67(5), 770–779.CrossRef
Zurück zum Zitat Gu, J. Z. (2014). Free vibration of castellated beams with web shear and rotary inertia effects. International Journal of Structural Stability and Dynamics, 14(6), 1–10 (1450011). Gu, J. Z. (2014). Free vibration of castellated beams with web shear and rotary inertia effects. International Journal of Structural Stability and Dynamics, 14(6), 1–10 (1450011).
Zurück zum Zitat Gu, J. Z., & Cheng, S. S. (2016). Shear effect on buckling of cellular columns subjected to axially compressed load. Thin-Walled Structures,98(Part B), 416–420.CrossRef Gu, J. Z., & Cheng, S. S. (2016). Shear effect on buckling of cellular columns subjected to axially compressed load. Thin-Walled Structures,98(Part B), 416–420.CrossRef
Zurück zum Zitat Hsu, C. S. (1966). On dynamic stability of elastic bodies with prescribed initial conditions. International Journal of Engineering Science,4(1), 1–21.CrossRef Hsu, C. S. (1966). On dynamic stability of elastic bodies with prescribed initial conditions. International Journal of Engineering Science,4(1), 1–21.CrossRef
Zurück zum Zitat Huang, C. C. (1980). Dynamic stability of generally orthotropic beams. Fibre Science and Technology,13(3), 187–198.CrossRef Huang, C. C. (1980). Dynamic stability of generally orthotropic beams. Fibre Science and Technology,13(3), 187–198.CrossRef
Zurück zum Zitat Huang, J. S., & Hung, L. H. (1984). Dynamic stability for a simply supported beam under periodic axial excitation. International Journal of Nonlinear Mechanics,19(4), 287–301.CrossRef Huang, J. S., & Hung, L. H. (1984). Dynamic stability for a simply supported beam under periodic axial excitation. International Journal of Nonlinear Mechanics,19(4), 287–301.CrossRef
Zurück zum Zitat Kar, R. C., & Sujata, T. (1991). Dynamic stability of a rotating beam with various boundary conditions. Computers & Structures,40(3), 753–773.CrossRef Kar, R. C., & Sujata, T. (1991). Dynamic stability of a rotating beam with various boundary conditions. Computers & Structures,40(3), 753–773.CrossRef
Zurück zum Zitat Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of Constructional Steel Research,4(4), 295–315.CrossRef Kerdal, D., & Nethercot, D. A. (1984). Failure modes for castellated beams. Journal of Constructional Steel Research,4(4), 295–315.CrossRef
Zurück zum Zitat Kim, B., Li, L. Y., & Edmonds, A. (2016) Analytical solutions of lateral-torsional buckling of castellated beams. International Journal of Structural Stability and Dynamics, 16(8), 1–16 (1550044). Kim, B., Li, L. Y., & Edmonds, A. (2016) Analytical solutions of lateral-torsional buckling of castellated beams. International Journal of Structural Stability and Dynamics, 16(8), 1–16 (1550044).
Zurück zum Zitat Kratzig, W. B., Li, L. Y., & Nawrotzki, P. (1991). Stability conditions for non-conservative dynamical systems. Computational Mechanics,8(3), 145–151.MathSciNetCrossRef Kratzig, W. B., Li, L. Y., & Nawrotzki, P. (1991). Stability conditions for non-conservative dynamical systems. Computational Mechanics,8(3), 145–151.MathSciNetCrossRef
Zurück zum Zitat Li, L. Y. (1991). Interaction of forced and parametric loading vibrations. Computers & Structures,40(3), 615–618.CrossRef Li, L. Y. (1991). Interaction of forced and parametric loading vibrations. Computers & Structures,40(3), 615–618.CrossRef
Zurück zum Zitat Mohebkhah, A. (2004). The moment-gradient factor in lateral–torsional buckling on inelastic castellated beams. Journal of Constructional Steel Research,60(10), 1481–1494.CrossRef Mohebkhah, A. (2004). The moment-gradient factor in lateral–torsional buckling on inelastic castellated beams. Journal of Constructional Steel Research,60(10), 1481–1494.CrossRef
Zurück zum Zitat Mohebkhah, A., & Showkati, H. (2005). Bracing requirements for inelastic castellated beams. Journal of Constructional Steel Research,61(10), 1373–1386.CrossRef Mohebkhah, A., & Showkati, H. (2005). Bracing requirements for inelastic castellated beams. Journal of Constructional Steel Research,61(10), 1373–1386.CrossRef
Zurück zum Zitat Najafi, M., & Wang, Y. C. (2017). Behaviour and design of steel members with web openings under combined bending, shear and compression. Journal of Constructional Steel Research,128, 579–600.CrossRef Najafi, M., & Wang, Y. C. (2017). Behaviour and design of steel members with web openings under combined bending, shear and compression. Journal of Constructional Steel Research,128, 579–600.CrossRef
Zurück zum Zitat Nethercot, D. A., & Kerdal, D. (1982). Lateral-torsional buckling of castellated beams. The Structural Engineer,60, 53–61. Nethercot, D. A., & Kerdal, D. (1982). Lateral-torsional buckling of castellated beams. The Structural Engineer,60, 53–61.
Zurück zum Zitat Park, Y. P. (1987). Dynamic stability of a free Timoshenko beam under a controlled follower force. Journal of Sound and Vibration,113(3), 407–415.CrossRef Park, Y. P. (1987). Dynamic stability of a free Timoshenko beam under a controlled follower force. Journal of Sound and Vibration,113(3), 407–415.CrossRef
Zurück zum Zitat Patel, S. N., Datta, P. K., & Sheikh, A. H. (2006). Buckling and dynamic instability analysis of stiffened shell panels. Thin-Walled Structures,44(3), 321–333.CrossRef Patel, S. N., Datta, P. K., & Sheikh, A. H. (2006). Buckling and dynamic instability analysis of stiffened shell panels. Thin-Walled Structures,44(3), 321–333.CrossRef
Zurück zum Zitat Pattanayak, U. C., & Chesson, E. (1974). Lateral instability of castellated beams. AISC Engineering Journal,11(3), 73–79. Pattanayak, U. C., & Chesson, E. (1974). Lateral instability of castellated beams. AISC Engineering Journal,11(3), 73–79.
Zurück zum Zitat Showkati, H., Ghazijahani, T. G., Noori, A., & Zirakian, T. (2012). Experiments on elastically braced castellated beams. Journal of Constructional Steel Research,77, 163–172.CrossRef Showkati, H., Ghazijahani, T. G., Noori, A., & Zirakian, T. (2012). Experiments on elastically braced castellated beams. Journal of Constructional Steel Research,77, 163–172.CrossRef
Zurück zum Zitat Soltani, M. R., Bouchaïr, A., & Mimoune, M. (2012). Nonlinear FE analysis of the ultimate behaviour of steel castellated beams. Journal of Constructional Steel Research,70, 101–114.CrossRef Soltani, M. R., Bouchaïr, A., & Mimoune, M. (2012). Nonlinear FE analysis of the ultimate behaviour of steel castellated beams. Journal of Constructional Steel Research,70, 101–114.CrossRef
Zurück zum Zitat Sonck, D., & Belis, J. (2016). Weak-axis flexural buckling of cellular and castellated columns. Journal of Constructional Steel Research,124, 91–100.CrossRef Sonck, D., & Belis, J. (2016). Weak-axis flexural buckling of cellular and castellated columns. Journal of Constructional Steel Research,124, 91–100.CrossRef
Zurück zum Zitat Sonck, D., Van Impe, R., & Belis, J. (2014). Experimental investigation of residual stresses in steel cellular and castellated members. Construction and Building Materials,54, 512–519.CrossRef Sonck, D., Van Impe, R., & Belis, J. (2014). Experimental investigation of residual stresses in steel cellular and castellated members. Construction and Building Materials,54, 512–519.CrossRef
Zurück zum Zitat Sorkhabi, R. V., Naseri, A., & Naseri, M. (2014). Optimization of the castellated beams by particle swarm algorithms method. APCBEE Procedia,9, 381–387.CrossRef Sorkhabi, R. V., Naseri, A., & Naseri, M. (2014). Optimization of the castellated beams by particle swarm algorithms method. APCBEE Procedia,9, 381–387.CrossRef
Zurück zum Zitat Sweedan, A. M. I. (2011). Elastic lateral stability of I-shaped cellular steel beams. Journal of Constructional Steel Research,67(2), 151–163.CrossRef Sweedan, A. M. I. (2011). Elastic lateral stability of I-shaped cellular steel beams. Journal of Constructional Steel Research,67(2), 151–163.CrossRef
Zurück zum Zitat Tsavdaridis, K. D., & D’Mello, C. (2012). Optimisation of novel elliptically-based web opening shapes of perforated steel beams. Journal of Constructional Steel Research,76, 39–53.CrossRef Tsavdaridis, K. D., & D’Mello, C. (2012). Optimisation of novel elliptically-based web opening shapes of perforated steel beams. Journal of Constructional Steel Research,76, 39–53.CrossRef
Zurück zum Zitat Uang, C. M., & Fan, C. C. (2001). Cyclic stability criteria for steel moment connections with reduced beam section. Journal of Structural Engineering,127(9), 1021–1027.CrossRef Uang, C. M., & Fan, C. C. (2001). Cyclic stability criteria for steel moment connections with reduced beam section. Journal of Structural Engineering,127(9), 1021–1027.CrossRef
Zurück zum Zitat Van Oostrom, J., & Sherbourne, A. N. (1972). Plastic analysis of castellated beams—II. Analysis and tests. Computers & Structures,2(1/2), 111–140.CrossRef Van Oostrom, J., & Sherbourne, A. N. (1972). Plastic analysis of castellated beams—II. Analysis and tests. Computers & Structures,2(1/2), 111–140.CrossRef
Zurück zum Zitat Wang, P., Guo, K., Liu, M., & Zhang, L. (2016). Shear buckling strengths of web-posts in a castellated steel beam with hexagonal web openings. Journal of Constructional Steel Research,121, 173–184.CrossRef Wang, P., Guo, K., Liu, M., & Zhang, L. (2016). Shear buckling strengths of web-posts in a castellated steel beam with hexagonal web openings. Journal of Constructional Steel Research,121, 173–184.CrossRef
Zurück zum Zitat Wang, P., Wang, X., & Ma, N. (2014). Vertical shear buckling capacity of web-posts in castellated steel beams with fillet corner hexagonal web openings. Engineering Structures,75, 315–326.CrossRef Wang, P., Wang, X., & Ma, N. (2014). Vertical shear buckling capacity of web-posts in castellated steel beams with fillet corner hexagonal web openings. Engineering Structures,75, 315–326.CrossRef
Zurück zum Zitat Yeh, J. Y., Chen, L. W., & Wang, C. C. (2004). Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core. Composite Structures,64(1), 47–54.CrossRef Yeh, J. Y., Chen, L. W., & Wang, C. C. (2004). Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core. Composite Structures,64(1), 47–54.CrossRef
Zurück zum Zitat Yoon, S. J., & Kim, J. H. (2002). A concentrated mass on the spring unconstrained beam subjected to a thrust. Journal of Sound and Vibration,254(4), 621–634.CrossRef Yoon, S. J., & Kim, J. H. (2002). A concentrated mass on the spring unconstrained beam subjected to a thrust. Journal of Sound and Vibration,254(4), 621–634.CrossRef
Zurück zum Zitat Yuan, W. B., Kim, B., & Li, L. Y. (2014). Buckling of axially loaded castellated steel columns. Journal of Constructional Steel Research,92, 40–45.CrossRef Yuan, W. B., Kim, B., & Li, L. Y. (2014). Buckling of axially loaded castellated steel columns. Journal of Constructional Steel Research,92, 40–45.CrossRef
Zurück zum Zitat Zirakian, T., & Showkati, H. (2006). Distortional buckling of castellated beams. Journal of Constructional Steel Research,62(9), 863–871.CrossRef Zirakian, T., & Showkati, H. (2006). Distortional buckling of castellated beams. Journal of Constructional Steel Research,62(9), 863–871.CrossRef
Metadaten
Titel
Dynamic Instability Analysis of Axially Compressed Castellated Columns
verfasst von
Jin-song Lei
Boksun Kim
Long-yuan Li
Publikationsdatum
16.01.2020
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 2/2020
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-020-00306-8

Weitere Artikel der Ausgabe 2/2020

International Journal of Steel Structures 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.