Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2024

01.02.2024

Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with \(\beta \)-derivative in optical fibers

verfasst von: Lu Tang

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdon, A., Dumitru, B., Ahmed, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14, 145–149 (2016) Abdon, A., Dumitru, B., Ahmed, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14, 145–149 (2016)
Zurück zum Zitat Akram, G., Sarfraz, M.: Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 242, 167258 (2021)ADS Akram, G., Sarfraz, M.: Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 242, 167258 (2021)ADS
Zurück zum Zitat Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS
Zurück zum Zitat Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrödinger equations. Opt. Quant. Electron. 53, 588 (2021) Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrödinger equations. Opt. Quant. Electron. 53, 588 (2021)
Zurück zum Zitat Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023a) Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023a)
Zurück zum Zitat Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023b) Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023b)
Zurück zum Zitat Alquran, M., Jaradat, I.: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-Dimensional Nizhnik-Novikov-Veselov equation. Mathematics 11, 861 (2023) Alquran, M., Jaradat, I.: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-Dimensional Nizhnik-Novikov-Veselov equation. Mathematics 11, 861 (2023)
Zurück zum Zitat Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74, 99 (2002)MathSciNetADS Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74, 99 (2002)MathSciNetADS
Zurück zum Zitat Biswas, A.: Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 49, 580–583 (2020) Biswas, A.: Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 49, 580–583 (2020)
Zurück zum Zitat Biswas, A., Alqahtani, R.T.: Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle. Optik 147, 77–81 (2017)ADS Biswas, A., Alqahtani, R.T.: Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle. Optik 147, 77–81 (2017)ADS
Zurück zum Zitat Biswas, A., Sonmezoglu, A., Ekici, M., et al.: Optical solitons perturbation with Kudryashov’s equation by F-expansion. Optik 199, 163338 (2019)ADS Biswas, A., Sonmezoglu, A., Ekici, M., et al.: Optical solitons perturbation with Kudryashov’s equation by F-expansion. Optik 199, 163338 (2019)ADS
Zurück zum Zitat Biswas, A., Asma, M., Guggilla, P., et al.: Optical solitons with Kudryashov’s equation by Semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020)MathSciNet Biswas, A., Asma, M., Guggilla, P., et al.: Optical solitons with Kudryashov’s equation by Semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020)MathSciNet
Zurück zum Zitat Bo, W.B., Wang, R.R., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractIonal Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111, 1577–1588 (2023) Bo, W.B., Wang, R.R., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractIonal Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111, 1577–1588 (2023)
Zurück zum Zitat Chen, Y.X., Xiao, X.: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109, 2003–2012 (2022) Chen, Y.X., Xiao, X.: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109, 2003–2012 (2022)
Zurück zum Zitat Chen, C., Jiang, Y.L., Wang, Z.L., et al.: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)ADS Chen, C., Jiang, Y.L., Wang, Z.L., et al.: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)ADS
Zurück zum Zitat Corlay, S., Lebovits, J., Vhel, J.L.: Multifractional stochastic volatility models. Math. Finance 24, 364–402 (2014)MathSciNet Corlay, S., Lebovits, J., Vhel, J.L.: Multifractional stochastic volatility models. Math. Finance 24, 364–402 (2014)MathSciNet
Zurück zum Zitat Cresson, J., Szafranska, A.: Comments on various extensions of the RiemannCLiouville fractional derivatives : about the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 82, 104903 (2020)MathSciNet Cresson, J., Szafranska, A.: Comments on various extensions of the RiemannCLiouville fractional derivatives : about the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 82, 104903 (2020)MathSciNet
Zurück zum Zitat Das, A., Biswas, A., Ekici, M., et al.: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chinese J. Phys. 61, 255–261 (2019)MathSciNetADS Das, A., Biswas, A., Ekici, M., et al.: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chinese J. Phys. 61, 255–261 (2019)MathSciNetADS
Zurück zum Zitat Esen, A., Sulaiman, T.A., et al.: Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)ADS Esen, A., Sulaiman, T.A., et al.: Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)ADS
Zurück zum Zitat Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)MathSciNet Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)MathSciNet
Zurück zum Zitat Fang, Y., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021) Fang, Y., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)
Zurück zum Zitat Geng, K.L., Zhu, B.W., Cao, Q.H., et al.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111, 16483–16496 (2023a) Geng, K.L., Zhu, B.W., Cao, Q.H., et al.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111, 16483–16496 (2023a)
Zurück zum Zitat Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. 111, 603–617 (2023b) Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. 111, 603–617 (2023b)
Zurück zum Zitat Graef, J.R., Tinc, C., et al.: Razumikhin qualitative analysis of Volterr integro-fractional delay differential equation with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 103, 106037 (2021) Graef, J.R., Tinc, C., et al.: Razumikhin qualitative analysis of Volterr integro-fractional delay differential equation with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 103, 106037 (2021)
Zurück zum Zitat Hammad, M.A., Khalil, R.: Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 94, 215–221 (2014) Hammad, M.A., Khalil, R.: Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 94, 215–221 (2014)
Zurück zum Zitat Han, T.Y., Li, Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A 395, 127217 (2021) Han, T.Y., Li, Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A 395, 127217 (2021)
Zurück zum Zitat Hosseini, K., Salahshour, S., Mirzazadeh, M.: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 1–9 (2021) Hosseini, K., Salahshour, S., Mirzazadeh, M.: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 1–9 (2021)
Zurück zum Zitat Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8, 1127 (2020) Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8, 1127 (2020)
Zurück zum Zitat Khalil, R., Horani, A., Yousef, A., et al.: A new definition of fractional derivative. J. Comp. Appl. Math. 264, 65–70 (2014)MathSciNet Khalil, R., Horani, A., Yousef, A., et al.: A new definition of fractional derivative. J. Comp. Appl. Math. 264, 65–70 (2014)MathSciNet
Zurück zum Zitat Khan, Y., Wu, Q.B., Faraz, N., et al.: A new fractional analytical approach via a modified Riemann-Liouville derivative. Appl. Math. Lett. 25, 1340–1346 (2012)MathSciNet Khan, Y., Wu, Q.B., Faraz, N., et al.: A new fractional analytical approach via a modified Riemann-Liouville derivative. Appl. Math. Lett. 25, 1340–1346 (2012)MathSciNet
Zurück zum Zitat Kucche, K.D., Sutar, S.T.: Analysis of nonlinear fractional differential equations involving Atangana–Baleanu-Caputo derivative. Chaos Solitons Fractals 143, 110556 (2021)MathSciNet Kucche, K.D., Sutar, S.T.: Analysis of nonlinear fractional differential equations involving Atangana–Baleanu-Caputo derivative. Chaos Solitons Fractals 143, 110556 (2021)MathSciNet
Zurück zum Zitat Li, J.B.: Singular nonlinear traveling wave equations: bifurcation and exact solutions. Science Press, Beijing (2013) Li, J.B.: Singular nonlinear traveling wave equations: bifurcation and exact solutions. Science Press, Beijing (2013)
Zurück zum Zitat Li, J.B., Dai, H.H.: On the study of singular nonlinear traveling wave equations: dynamical system approach. Science Press, Beijing (2007) Li, J.B., Dai, H.H.: On the study of singular nonlinear traveling wave equations: dynamical system approach. Science Press, Beijing (2007)
Zurück zum Zitat Li, L.F., Xie, Y.Y., Zhu, S.H.: New exact solutions for a generalized KDV equation. Nonlinear Dyn. 92, 215–219 (2018) Li, L.F., Xie, Y.Y., Zhu, S.H.: New exact solutions for a generalized KDV equation. Nonlinear Dyn. 92, 215–219 (2018)
Zurück zum Zitat Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)MathSciNet Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)MathSciNet
Zurück zum Zitat Malomed, B.A.: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations. Phys. Lett. A 422, 127802 (2022)MathSciNet Malomed, B.A.: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations. Phys. Lett. A 422, 127802 (2022)MathSciNet
Zurück zum Zitat Ortigueira, M.D.: Comments on Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions. Appl. Math. Model. 33, 2534–2537 (2009)MathSciNet Ortigueira, M.D.: Comments on Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions. Appl. Math. Model. 33, 2534–2537 (2009)MathSciNet
Zurück zum Zitat Ouahid, L., Owyed, S., Abdou, M.A., Alshehri, N.A., et al.: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order. Alex. Eng. J. 60, 5495–5510 (2021) Ouahid, L., Owyed, S., Abdou, M.A., Alshehri, N.A., et al.: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order. Alex. Eng. J. 60, 5495–5510 (2021)
Zurück zum Zitat Rosa, C., de Oliveira, E.C.: Relaxation equations: fractional models. J. Phys. Math. 6, 1–7 (2015) Rosa, C., de Oliveira, E.C.: Relaxation equations: fractional models. J. Phys. Math. 6, 1–7 (2015)
Zurück zum Zitat Scott, A.C.: Encyclopedia of Nonlinear Science. Routledge, New York (2005) Scott, A.C.: Encyclopedia of Nonlinear Science. Routledge, New York (2005)
Zurück zum Zitat Tang, L.: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Res. Phys. 18, 103289 (2020) Tang, L.: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Res. Phys. 18, 103289 (2020)
Zurück zum Zitat Tang, L.: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)ADS Tang, L.: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)ADS
Zurück zum Zitat Tang, L.: Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J. Opt. 52, 581–592 (2022) Tang, L.: Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J. Opt. 52, 581–592 (2022)
Zurück zum Zitat Tang, L.: Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 265, 169555 (2022)ADS Tang, L.: Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 265, 169555 (2022)ADS
Zurück zum Zitat Tang, L.: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fractals 161, 112383 (2022) Tang, L.: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fractals 161, 112383 (2022)
Zurück zum Zitat Tang, L.: Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks. Optik 262, 169276 (2022)ADS Tang, L.: Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks. Optik 262, 169276 (2022)ADS
Zurück zum Zitat Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS
Zurück zum Zitat Tang, L., Chen, S.P.: The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt. Quant. Electron. 54, 105 (2022) Tang, L., Chen, S.P.: The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt. Quant. Electron. 54, 105 (2022)
Zurück zum Zitat Tang, L., Biswas, A., Yildirim, Y., Alghamdi, A.A.: Bifurcation analysis and optical solitons for the concatenation model. Phys. Lett. A 480, 128943 (2023)MathSciNet Tang, L., Biswas, A., Yildirim, Y., Alghamdi, A.A.: Bifurcation analysis and optical solitons for the concatenation model. Phys. Lett. A 480, 128943 (2023)MathSciNet
Zurück zum Zitat Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18, 2945–2948 (2013)MathSciNetADS Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18, 2945–2948 (2013)MathSciNetADS
Zurück zum Zitat Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022) Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)
Zurück zum Zitat Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 8, 273–281 (2003)MathSciNetADS Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 8, 273–281 (2003)MathSciNetADS
Zurück zum Zitat Wen, K.X., Jiang, J.H., Dai, C.Q.: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 111, 13343–13355 (2023) Wen, K.X., Jiang, J.H., Dai, C.Q.: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 111, 13343–13355 (2023)
Zurück zum Zitat Xie, Y.Y., Yang, Z.Y., Li, L.F.: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A 382, 2506–2514 (2018)MathSciNetADS Xie, Y.Y., Yang, Z.Y., Li, L.F.: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A 382, 2506–2514 (2018)MathSciNetADS
Zurück zum Zitat Xie, Y.Y., Li, L.F., Kang, Y.: New solitons and comditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law noninearity. Nonlinear Dyn. 103, 1011–1021 (2021) Xie, Y.Y., Li, L.F., Kang, Y.: New solitons and comditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law noninearity. Nonlinear Dyn. 103, 1011–1021 (2021)
Zurück zum Zitat Yang, L., Hou, X.Y., Zeng, Z.B.: Compete discrimation system for polynomial. Sci. China Ser. E. 26, 628–646 (1996) Yang, L., Hou, X.Y., Zeng, Z.B.: Compete discrimation system for polynomial. Sci. China Ser. E. 26, 628–646 (1996)
Zurück zum Zitat Yepez-Martnez, H., Gomez-Aguilar, J.F., Dumitru, B.: Beta-derivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)ADS Yepez-Martnez, H., Gomez-Aguilar, J.F., Dumitru, B.: Beta-derivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)ADS
Zurück zum Zitat Zhou, J.R., Zhou, R., Zhu, S.H.: Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations. Chaos Solitons Fractals 141, 110419 (2020)MathSciNet Zhou, J.R., Zhou, R., Zhu, S.H.: Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations. Chaos Solitons Fractals 141, 110419 (2020)MathSciNet
Zurück zum Zitat Zhou, Q., Triki, H., Xu, J.K., et al.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2021)MathSciNet Zhou, Q., Triki, H., Xu, J.K., et al.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2021)MathSciNet
Metadaten
Titel
Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with -derivative in optical fibers
verfasst von
Lu Tang
Publikationsdatum
01.02.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05761-1

Weitere Artikel der Ausgabe 2/2024

Optical and Quantum Electronics 2/2024 Zur Ausgabe

Neuer Inhalt