Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order

verfasst von: Athar I. Ahmed, Mohamed S. Algolam, Clemente Cesarano, Doaa Rizk, F. Gassem, Wael W. Mohammed

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The generalized nonlinear Schrödinger equation with M-truncated derivatives (GNLSE-MTD) is studied here. By using generalized Riccati equation and mapping methods, new elliptic, hyperbolic, trigonometric, and rational solutions are discovered. Because the GNLSE is widely employed in communication, heat pulse propagation in materials, optical fiber communication systems, and nonlinear optical phenomena, the resulting solutions may be used to analyze a wide variety of important physical phenomena. The dynamic behaviors of the various derived solutions are interpreted using 3-D and 2-D graphs to explain the affects of M-truncated derivatives. We can deduce that the surface shifts to the left when the order of M-truncated derivatives decreases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alshammari, M., Hamza, A.E., Cesarano, C., Aly, E.S., Mohammed, W.W.: The analytical solutions to the fractional Kraenkel–Manna–Merle system in ferromagnetic materials. Fractal Fract. 11, 1216451 (2023) Alshammari, M., Hamza, A.E., Cesarano, C., Aly, E.S., Mohammed, W.W.: The analytical solutions to the fractional Kraenkel–Manna–Merle system in ferromagnetic materials. Fractal Fract. 11, 1216451 (2023)
Zurück zum Zitat Alshammari, S., Mohammed, W.W., Samura, S.K., Faleh, S.: The analytical solutions for the stochastic-fractional Broer–Kaup equations. Math. Probl. Eng. 2022, 6895875 (2022)CrossRef Alshammari, S., Mohammed, W.W., Samura, S.K., Faleh, S.: The analytical solutions for the stochastic-fractional Broer–Kaup equations. Math. Probl. Eng. 2022, 6895875 (2022)CrossRef
Zurück zum Zitat Baskonus, H.M., Bulut, H., Sulaiman, T.A.: New complex hyperbolic structures to the Lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 129–138 (2019)MathSciNetCrossRef Baskonus, H.M., Bulut, H., Sulaiman, T.A.: New complex hyperbolic structures to the Lonngren-wave equation by using sine-gordon expansion method. Appl. Math. Nonlinear Sci. 4(1), 129–138 (2019)MathSciNetCrossRef
Zurück zum Zitat Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87, 455–463 (2008)ADSCrossRef Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov–Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87, 455–463 (2008)ADSCrossRef
Zurück zum Zitat Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Sci. 1(2), 149–170 (2023) Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Sci. 1(2), 149–170 (2023)
Zurück zum Zitat Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021)CrossRef Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021)CrossRef
Zurück zum Zitat Bulut, H., Pandir, Y., Demiray, S.T.: Exact solutions of nonlinear Schrodinger’s equation with dual power-law nonlinearity by extended trial equation method. Waves Random Complex Media 24, 439 (2014)ADSMathSciNetCrossRef Bulut, H., Pandir, Y., Demiray, S.T.: Exact solutions of nonlinear Schrodinger’s equation with dual power-law nonlinearity by extended trial equation method. Waves Random Complex Media 24, 439 (2014)ADSMathSciNetCrossRef
Zurück zum Zitat Caputo, M., Fabrizio, M.: A new definition of fractional differential without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional differential without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)
Zurück zum Zitat Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dynam. 84(3), 1157–1161 (2016)MathSciNetCrossRef Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dynam. 84(3), 1157–1161 (2016)MathSciNetCrossRef
Zurück zum Zitat Fendzi-Donfack, E., Baduidana, M., Fotsa-Ngaffo, F., Kenfack-Jiotsa, A.: Construction of abundant solitons in a coupled nonlinear pendulum lattice through two discrete distinct techniques. Results Phys. 52, 106783 (2023)CrossRef Fendzi-Donfack, E., Baduidana, M., Fotsa-Ngaffo, F., Kenfack-Jiotsa, A.: Construction of abundant solitons in a coupled nonlinear pendulum lattice through two discrete distinct techniques. Results Phys. 52, 106783 (2023)CrossRef
Zurück zum Zitat Fendzi-Donfack, E., Kenfack-Jiotsa, A.: Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents-LC blocks. Chaos Solitons Fractals 177, 114266 (2023)MathSciNetCrossRef Fendzi-Donfack, E., Kenfack-Jiotsa, A.: Extended Fan’s sub-ODE technique and its application to a fractional nonlinear coupled network including multicomponents-LC blocks. Chaos Solitons Fractals 177, 114266 (2023)MathSciNetCrossRef
Zurück zum Zitat Fendzi-Donfack, E., Kumar, D., Tala-Tebue, E., Nana, L., Nguenang, J.P., Kenfack-Jiotsa, A.: Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method. Results Phys. 32, 105086 (2022)CrossRef Fendzi-Donfack, E., Kumar, D., Tala-Tebue, E., Nana, L., Nguenang, J.P., Kenfack-Jiotsa, A.: Construction of exotical soliton-like for a fractional nonlinear electrical circuit equation using differential-difference Jacobi elliptic functions sub-equation method. Results Phys. 32, 105086 (2022)CrossRef
Zurück zum Zitat Fendzi-Donfack, E., Temgoua, G.W.K., Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P., Nana, L.: Exotical solitons for an intrinsic fractional circuit using the sine–cosine method. Chaos Solitons Fractals 160, 112253 (2022)MathSciNetCrossRef Fendzi-Donfack, E., Temgoua, G.W.K., Djoufack, Z.I., Kenfack-Jiotsa, A., Nguenang, J.P., Nana, L.: Exotical solitons for an intrinsic fractional circuit using the sine–cosine method. Chaos Solitons Fractals 160, 112253 (2022)MathSciNetCrossRef
Zurück zum Zitat Fitio, V.M., Yaremchuk, I.Y., Romakh, V.V., Bobitski, Y.V.: A solution of one-dimensional stationary Schrödinger equation by the Fourier transform. Comput. Electromagn. Soc. J. 30, 534 (2015) Fitio, V.M., Yaremchuk, I.Y., Romakh, V.V., Bobitski, Y.V.: A solution of one-dimensional stationary Schrödinger equation by the Fourier transform. Comput. Electromagn. Soc. J. 30, 534 (2015)
Zurück zum Zitat Hilfer, R.: Applications of fractional calculus in physics. World Scientific Publishing, Singapore (2000)CrossRef Hilfer, R.: Applications of fractional calculus in physics. World Scientific Publishing, Singapore (2000)CrossRef
Zurück zum Zitat Hou, E., Wang, F., Salama, S.A., Khater, M.M.A.: On analytical and numerical simulations for the ultra-short pulses mathematical model in optical fibers. Fractals 30, 2240141 (2022)ADSCrossRef Hou, E., Wang, F., Salama, S.A., Khater, M.M.A.: On analytical and numerical simulations for the ultra-short pulses mathematical model in optical fibers. Fractals 30, 2240141 (2022)ADSCrossRef
Zurück zum Zitat Jiong, S.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)ADSMathSciNetCrossRef Jiong, S.: Auxiliary equation method for solving nonlinear partial differential equations. Phys. Lett. A 309, 387–396 (2003)ADSMathSciNetCrossRef
Zurück zum Zitat Khan, K., Akbar, M.A.: The \(exp(-\phi (\varsigma ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5, 72–83 (2014)MathSciNet Khan, K., Akbar, M.A.: The \(exp(-\phi (\varsigma ))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5, 72–83 (2014)MathSciNet
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. Wiley, New York, NY (1993) Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. Wiley, New York, NY (1993)
Zurück zum Zitat Miller, S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York, NY (1993) Miller, S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York, NY (1993)
Zurück zum Zitat Mohammed, W.W., Cesarano, C., Elsayed, E.M., Al-Askar, F.M.: The analytical fractional solutions for coupled Fokas system in fiber optics using different methods. Fractal Fract. 7(7), 556 (2023)CrossRef Mohammed, W.W., Cesarano, C., Elsayed, E.M., Al-Askar, F.M.: The analytical fractional solutions for coupled Fokas system in fiber optics using different methods. Fractal Fract. 7(7), 556 (2023)CrossRef
Zurück zum Zitat Oldham, K.B., Spanier, J.: The fractional calculus: theory and applications of differentiation and ntegration to Arbitrary Order. Mathematics in science and engineering, vol. 11. Academic Press, New York, NY (1974) Oldham, K.B., Spanier, J.: The fractional calculus: theory and applications of differentiation and ntegration to Arbitrary Order. Mathematics in science and engineering, vol. 11. Academic Press, New York, NY (1974)
Zurück zum Zitat Podlubny, I.: Fractional differential equations. Mathematics in science and engineering, vol. 198. Academic Press, San Diego, Calif (1999) Podlubny, I.: Fractional differential equations. Mathematics in science and engineering, vol. 198. Academic Press, San Diego, Calif (1999)
Zurück zum Zitat Riesz, M.: L’intégrale de Riemann-Liouville et le probl ème de Cauchy pour l’équation des ondes. Bulletin de la Sociét é Mathématique de France 67, 153–170 (1939)CrossRef Riesz, M.: L’intégrale de Riemann-Liouville et le probl ème de Cauchy pour l’équation des ondes. Bulletin de la Sociét é Mathématique de France 67, 153–170 (1939)CrossRef
Zurück zum Zitat Sousa, J.V., de Oliveira, E.C.: A new truncated Mfractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018) Sousa, J.V., de Oliveira, E.C.: A new truncated Mfractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)
Zurück zum Zitat Wang, M.L., Li, X.Z., Zhang, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSMathSciNetCrossRef Wang, M.L., Li, X.Z., Zhang, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)ADSMathSciNetCrossRef
Zurück zum Zitat Wang, K.L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg–Whitham equation. Therm. Sci. 1, 54–54 (2016)ADS Wang, K.L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg–Whitham equation. Therm. Sci. 1, 54–54 (2016)ADS
Zurück zum Zitat Wazwaz, A.M.: The sine-cosine method for obtaining solutions with compact and noncompact structures. Appl. Math. Comput. 159(2), 559–576 (2004)MathSciNet Wazwaz, A.M.: The sine-cosine method for obtaining solutions with compact and noncompact structures. Appl. Math. Comput. 159(2), 559–576 (2004)MathSciNet
Zurück zum Zitat Zhang, H.: New application of the \((G^{\prime }/G)\)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 14, 3220–3225 (2009)ADSCrossRef Zhang, H.: New application of the \((G^{\prime }/G)\)-expansion method. Commun. Nonlinear Sci. Numer. Simul. 14, 3220–3225 (2009)ADSCrossRef
Zurück zum Zitat Zhu, S.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)ADSMathSciNetCrossRef Zhu, S.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation. Chaos Solitons Fractals 37, 1335–1342 (2008)ADSMathSciNetCrossRef
Metadaten
Titel
Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order
verfasst von
Athar I. Ahmed
Mohamed S. Algolam
Clemente Cesarano
Doaa Rizk
F. Gassem
Wael W. Mohammed
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06626-x

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt