Skip to main content

2018 | OriginalPaper | Buchkapitel

29. Dynamics in Vector Control and Field Orientation

verfasst von : Jan A Melkebeek

Erschienen in: Electrical Machines and Drives

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Chap. 17 of Part III, vector control and field orientation have already been presented. However, the dynamics have not been analysed. In this chapter we discuss vector control and field orientation more thoroughly, including an analysis of their dynamic behaviour.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term brushless AC machine is used when the field profile in space is sinusoidal; for trapezoidal or rectangular field profiles the term brushless DC machine is normally used.
 
2
Note that this superposition of mmfs also seems more correct than the traditional one with superposition of emfs, which is not allowed in case of saturation; the air-gap emf is also representative of the main field saturation level in a synchronous machine.
 
3
This circuit may also be derived as the solution of the vectorial equation \(\underline{I}_{s}=\underline{I}_{s\phi }+\underline{I}_{s\tau }\) where the two components are orthogonal, with \(\underline{I}_{s\tau }\)in phase with the emf \(\underline{E}_{r}\).
 
4
It is slow, because it is bound by physical laws prohibiting any sudden flux changes.
 
5
Except for machines with closed rotor slots where the rotor leakage flux may vary considerably.
 
6
Keep in mind that this is not the rotor flux angle but the mechanical rotor angle.
 
7
The compensation can also be regarded as an integration constant: the switching angle of the inverter has to change from \(\gamma _{1}+(\omega _{s1}+\omega _{r})t\) to \(\gamma _{2}+(\omega _{s2}+\omega _{r})t\) and not to \(\gamma _{1}+(\omega _{s2}+\omega _{r})t\).
 
8
Prove this using the flux definitions \(\underline{\varPsi }_{s}=L_{s}\underline{I}_{s}+L_{m}\underline{I}_{r}\), \(\underline{\varPsi }_{r}=L_{m}\underline{I}_{s}+L_{r}\underline{I}_{r}\), \(\underline{\varPsi }_{m}=L_{m}(\underline{I}_{s}+\underline{I}_{r})\) (where the turns ratio has been supposed as equal to 1).
 
9
Prove this, introducing the leakages with \(L_{s}=L_{s\sigma }+L_{m}\), \(L_{r}=L_{r\sigma }+L_{m}\).
 
Metadaten
Titel
Dynamics in Vector Control and Field Orientation
verfasst von
Jan A Melkebeek
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72730-1_29