Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2019

12.06.2019

Effect of a floating permeable plate on the hydroelastic response of a very large floating structure

verfasst von: S. Singla, T. Sahoo, S. C. Martha, H. Behera

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effectiveness of a floating porous plate for mitigating the wave-induced structural response of a very large floating structure is investigated using the eigenfunction expansion method. The analysis is based on the assumption of a small-amplitude structural response of the very large floating structure and the linearized theory of water waves with the assumption that the elastic plate is floating freely on the free surface. The elastic plate is modeled using thin plate theory, and the wave past the porous plate is based on the assumptions of the generalized porous wavemaker theory. The horizontal plate reflects and dissipates a major part of the wave energy, which in turn reduces the wave-induced structural response of the structure. Wave reflection and dissipation increase in an oscillatory manner with an increase in the wavenumber associated with the incident wave, and a complementary trend is observed in the wave transmission, with the oscillatory trend diminishing for higher values of structural porosity. When the distance between the porous plate and floating elastic plate is an integer multiple of half the wavelength, a certain periodic oscillatory pattern occurs in the wave reflection, with complementary patterns being observed in the wave transmission and dissipation. The amplitude of the periodic oscillatory pattern in the wave reflection reduces with an increase in the length of the porous plate of moderate porosity. Moreover, the wave energy reflection and dissipation are greater in case of short compared with long waves for a floating porous plate of larger length. The elastic plate deflection and free surface elevation on the lee side of the floating elastic plate attenuate with an increase in the length of the porous plate for a moderate value of the structural porosity. The reflection coefficient and forces acting on the plate follow a similar pattern with variation of the distance between the porous plate and large floating structure, whilst the shear force and strain acting on the floating structure are complementary to the wave reflection and forces acting on the porous plate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang CM, Tay ZY (2011) Hydroelastic analysis and response of pontoon-type very large floating structures. In: Bungartz HJ, Mehl M, Schäfer M (eds) Fluid- structure interaction II, LNCSE 73. Springer, Berlin, pp 103–130CrossRef Wang CM, Tay ZY (2011) Hydroelastic analysis and response of pontoon-type very large floating structures. In: Bungartz HJ, Mehl M, Schäfer M (eds) Fluid- structure interaction II, LNCSE 73. Springer, Berlin, pp 103–130CrossRef
2.
Zurück zum Zitat Squire VA (2008) Synergies between VLFS hydroelasticity and sea ice research. Int J Offshore Polar Eng 18(3):1–13 Squire VA (2008) Synergies between VLFS hydroelasticity and sea ice research. Int J Offshore Polar Eng 18(3):1–13
3.
Zurück zum Zitat Squire VA (2011) Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos Trans R Soc A 369:2813–2831MathSciNetMATHCrossRef Squire VA (2011) Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos Trans R Soc A 369:2813–2831MathSciNetMATHCrossRef
4.
Zurück zum Zitat Mondal R, Mohanty SK, Sahoo T (2011) Expansion formulae for wave structure interaction problems in three dimensions. IMA J Appl Math 78(2):181–205MathSciNetMATHCrossRef Mondal R, Mohanty SK, Sahoo T (2011) Expansion formulae for wave structure interaction problems in three dimensions. IMA J Appl Math 78(2):181–205MathSciNetMATHCrossRef
5.
Zurück zum Zitat Mondal R, Sahoo T (2012) Wave structure interaction problems for two-layer fluids in three dimensions. Wave Motion 49(5):501–524MathSciNetMATHCrossRef Mondal R, Sahoo T (2012) Wave structure interaction problems for two-layer fluids in three dimensions. Wave Motion 49(5):501–524MathSciNetMATHCrossRef
6.
Zurück zum Zitat Korobkin A, Părău EI, Vanden-Broeck JM (2011) The mathematical challenges and modelling of hydroelasticity. Philos Trans R Soc A 369:2803–2812MathSciNetMATHCrossRef Korobkin A, Părău EI, Vanden-Broeck JM (2011) The mathematical challenges and modelling of hydroelasticity. Philos Trans R Soc A 369:2803–2812MathSciNetMATHCrossRef
7.
Zurück zum Zitat Părău EI, Vanden-Broeck JM (2011) Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos Trans R Soc A 369:2973–2988MathSciNetMATHCrossRef Părău EI, Vanden-Broeck JM (2011) Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Philos Trans R Soc A 369:2973–2988MathSciNetMATHCrossRef
9.
Zurück zum Zitat Shishmarev K, Khabakhpasheva T, Korobkin A (2016) The response of ice cover to a load moving along a frozen channel. Appl Ocean Res 59:313–326CrossRef Shishmarev K, Khabakhpasheva T, Korobkin A (2016) The response of ice cover to a load moving along a frozen channel. Appl Ocean Res 59:313–326CrossRef
10.
Zurück zum Zitat Wang Z, Părău EI, Milewski PA, Vanden-Broeck JM (2014) Numerical study of interfacial solitary waves propagating under an elastic sheet. Proc R Soc A 470:20140111MathSciNetMATHCrossRef Wang Z, Părău EI, Milewski PA, Vanden-Broeck JM (2014) Numerical study of interfacial solitary waves propagating under an elastic sheet. Proc R Soc A 470:20140111MathSciNetMATHCrossRef
11.
Zurück zum Zitat Vanden-Broeck JM, Smith FT (2008) Surface tension effects on interaction between two fluids near a wall. Q J Mech Appl Math 61(2):117–128MathSciNetMATHCrossRef Vanden-Broeck JM, Smith FT (2008) Surface tension effects on interaction between two fluids near a wall. Q J Mech Appl Math 61(2):117–128MathSciNetMATHCrossRef
12.
Zurück zum Zitat Das S, Sahoo T, Meylan MH (2018) Dynamics of flexural gravity waves: from sea ice to hawking radiation and analogue gravity. Proc R Soc A 474:20170223MATHCrossRef Das S, Sahoo T, Meylan MH (2018) Dynamics of flexural gravity waves: from sea ice to hawking radiation and analogue gravity. Proc R Soc A 474:20170223MATHCrossRef
13.
Zurück zum Zitat Das S, Sahoo T, Meylan MH (2018) Flexural–gravity wave dynamics in two-layer fluid: blocking and dead water analogue. J Fluid Mech (in press) Das S, Sahoo T, Meylan MH (2018) Flexural–gravity wave dynamics in two-layer fluid: blocking and dead water analogue. J Fluid Mech (in press)
14.
Zurück zum Zitat Wang CM, Tay ZY (2011) Very large floating structures: applications, research and development. Procedia Eng 14:62–72CrossRef Wang CM, Tay ZY (2011) Very large floating structures: applications, research and development. Procedia Eng 14:62–72CrossRef
15.
Zurück zum Zitat Wang CM, Tay ZY, Takagi K, Utsunomiya T (2010) Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Appl Mech Rev 63(3):030802CrossRef Wang CM, Tay ZY, Takagi K, Utsunomiya T (2010) Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Appl Mech Rev 63(3):030802CrossRef
16.
Zurück zum Zitat Tay ZY, Wang CM (2012) Reducing hydroelastic response of very large floating structures by altering their plan shapes. Ocean Syst Eng 2(1):69–81CrossRef Tay ZY, Wang CM (2012) Reducing hydroelastic response of very large floating structures by altering their plan shapes. Ocean Syst Eng 2(1):69–81CrossRef
17.
18.
Zurück zum Zitat Das S, Sahoo T (2017) Hydroelastic analysis of very large floating structure over viscoelastic bed. Meccanica 52(8):1871–1887MathSciNetMATHCrossRef Das S, Sahoo T (2017) Hydroelastic analysis of very large floating structure over viscoelastic bed. Meccanica 52(8):1871–1887MathSciNetMATHCrossRef
19.
20.
Zurück zum Zitat Koley S, Kaligatla RB, Sahoo T (2015) Oblique wave scattering by a vertical flexible porous plate. Stud Appl Math 135(1):1–34MathSciNetMATHCrossRef Koley S, Kaligatla RB, Sahoo T (2015) Oblique wave scattering by a vertical flexible porous plate. Stud Appl Math 135(1):1–34MathSciNetMATHCrossRef
21.
Zurück zum Zitat Ohkusu M, Namba Y (2004) Hydroelastic analysis of a large floating structure. J Fluids Struct 19(4):543–555CrossRef Ohkusu M, Namba Y (2004) Hydroelastic analysis of a large floating structure. J Fluids Struct 19(4):543–555CrossRef
22.
Zurück zum Zitat Riyansyah M, Wang CM, Choo YS (2010) Connection design for two-floating beam system for minimum hydroelastic response. Mar Struct 23(1):67–87CrossRef Riyansyah M, Wang CM, Choo YS (2010) Connection design for two-floating beam system for minimum hydroelastic response. Mar Struct 23(1):67–87CrossRef
23.
Zurück zum Zitat Kim KT, Lee PS, Park K (2013) A direct coupling method for 3d hydroelastic analysis of floating structures. Int J Numer Methods Eng 96(13):842–866MathSciNetMATHCrossRef Kim KT, Lee PS, Park K (2013) A direct coupling method for 3d hydroelastic analysis of floating structures. Int J Numer Methods Eng 96(13):842–866MathSciNetMATHCrossRef
24.
Zurück zum Zitat Nguyen HP, Dai J, Wang CM, Ang KK, Luong VH (2018) Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. Mar Struct 59:251–270CrossRef Nguyen HP, Dai J, Wang CM, Ang KK, Luong VH (2018) Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. Mar Struct 59:251–270CrossRef
25.
Zurück zum Zitat Singla S, Martha SC, Sahoo T (2018) Mitigation of structural responses of a very large floating structure in the presence of vertical porous barrier. Ocean Eng (in press) Singla S, Martha SC, Sahoo T (2018) Mitigation of structural responses of a very large floating structure in the presence of vertical porous barrier. Ocean Eng (in press)
26.
Zurück zum Zitat Yu X, Chwang AT (1994) Water waves above submerged porous plate. J Eng Mech 120(6):1270–1282CrossRef Yu X, Chwang AT (1994) Water waves above submerged porous plate. J Eng Mech 120(6):1270–1282CrossRef
27.
Zurück zum Zitat Wu J, Wan Z, Fang Y (1998) Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Eng 25(9):767–779CrossRef Wu J, Wan Z, Fang Y (1998) Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Eng 25(9):767–779CrossRef
28.
Zurück zum Zitat Hsu HH, Wu YC (1999) Scattering of water wave by a submerged horizontal plate and a submerged permeable breakwater. Ocean Eng 26(4):325–341CrossRef Hsu HH, Wu YC (1999) Scattering of water wave by a submerged horizontal plate and a submerged permeable breakwater. Ocean Eng 26(4):325–341CrossRef
29.
Zurück zum Zitat Yu X (2002) Functional performance of a submerged and essentially horizontal plate for offshore wave control: a review. Coast Eng J 44(2):127–147CrossRef Yu X (2002) Functional performance of a submerged and essentially horizontal plate for offshore wave control: a review. Coast Eng J 44(2):127–147CrossRef
31.
Zurück zum Zitat Koutandos E, Prinos P (2011) Hydrodynamic characteristics of semi-immersed breakwater with an attached porous plate. Ocean Eng 38(1):34–48CrossRef Koutandos E, Prinos P (2011) Hydrodynamic characteristics of semi-immersed breakwater with an attached porous plate. Ocean Eng 38(1):34–48CrossRef
32.
Zurück zum Zitat Behera H, Sahoo T (2015) Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate. J Fluids Struct 54:643–660CrossRef Behera H, Sahoo T (2015) Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate. J Fluids Struct 54:643–660CrossRef
33.
Zurück zum Zitat Cho IH (2016) Transmission coefficients of a floating rectangular breakwater with porous side plates. Int J Naval Archit Ocean Eng 8(1):53–65CrossRef Cho IH (2016) Transmission coefficients of a floating rectangular breakwater with porous side plates. Int J Naval Archit Ocean Eng 8(1):53–65CrossRef
34.
Zurück zum Zitat Meylan MH, Bennetts LG, Peter MA (2017) Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions. Wave Motion 70:240–250MathSciNetCrossRef Meylan MH, Bennetts LG, Peter MA (2017) Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions. Wave Motion 70:240–250MathSciNetCrossRef
35.
Zurück zum Zitat Koley S, Mondal R, Sahoo T (2018) Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate. Eur J Mech B/Fluids 67:291–305MathSciNetMATHCrossRef Koley S, Mondal R, Sahoo T (2018) Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate. Eur J Mech B/Fluids 67:291–305MathSciNetMATHCrossRef
36.
Zurück zum Zitat Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52(1):125–138MathSciNetCrossRef Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52(1):125–138MathSciNetCrossRef
37.
Zurück zum Zitat Meylan M, Squire VA (1993) Finite-floe wave reflection and transmission coefficients from a semi-infinite model. J Geophys Res 98(C7):12537–12542CrossRef Meylan M, Squire VA (1993) Finite-floe wave reflection and transmission coefficients from a semi-infinite model. J Geophys Res 98(C7):12537–12542CrossRef
38.
39.
Zurück zum Zitat Dalrymple RA, Losada MA, Martin PA (1991) Reflection and transmission from porous structures under oblique wave attack. J Fluid Mech 224:625–44MATHCrossRef Dalrymple RA, Losada MA, Martin PA (1991) Reflection and transmission from porous structures under oblique wave attack. J Fluid Mech 224:625–44MATHCrossRef
40.
Zurück zum Zitat McIver P (1998) The dispersion relation and eigenfunction expansions for water waves in a porous structure. J Eng Math 34:319–334MathSciNetMATHCrossRef McIver P (1998) The dispersion relation and eigenfunction expansions for water waves in a porous structure. J Eng Math 34:319–334MathSciNetMATHCrossRef
41.
42.
Zurück zum Zitat Fox C, Squire VA (1990) Reflection and transmission characteristics at the edge of shore fast sea ice. J Geophys Res 95(C7):11629–11639CrossRef Fox C, Squire VA (1990) Reflection and transmission characteristics at the edge of shore fast sea ice. J Geophys Res 95(C7):11629–11639CrossRef
45.
Zurück zum Zitat Sahoo T, Lee M, Chwang A (2000) Trapping and generation of waves by vertical porous structures. J Eng Mech 126(10):1074–1082CrossRef Sahoo T, Lee M, Chwang A (2000) Trapping and generation of waves by vertical porous structures. J Eng Mech 126(10):1074–1082CrossRef
Metadaten
Titel
Effect of a floating permeable plate on the hydroelastic response of a very large floating structure
verfasst von
S. Singla
T. Sahoo
S. C. Martha
H. Behera
Publikationsdatum
12.06.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2019
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-019-10002-0

Weitere Artikel der Ausgabe 1/2019

Journal of Engineering Mathematics 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.