Skip to main content
Erschienen in: Journal of Materials Science 11/2016

23.02.2016 | Original Paper

Effect of alloying on the stabilities and catalytic properties of Ag–Au bimetallic subnanoclusters: a theoretical investigation

verfasst von: Yuhua Chi, Lianming Zhao, Xiaoqing Lu, Changhua An, Wenyue Guo, Chi-Man Lawrence Wu

Erschienen in: Journal of Materials Science | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Density functional theory has been applied to study the geometric and electronic structures and the catalytic properties of Ag and AgAu clusters for CO oxidation. The calculated results suggest that the doping of Au atoms improve the stability of AgAu clusters. Correspondingly, the binding energy (BE) per atom of Ag n Au is larger than that of pure Ag n+1 cluster, due to strong hybridization between the d orbitals of Au and the s orbitals of Ag in Ag n Au clusters. With the increasing Au concentration, the BE of Ag13−n Aun(n = 1–8) clusters increase smoothly, while second-order difference of energies (Δ2 E) and fragmentation energies (ΔE) show an even–odd oscillation. The AgAu clusters containing an odd n umber of gold atoms (Ag13−n Au n , n = 3, 5, 7) are relatively stable compared to their neighbor. The CO and O2 adsorption properties on the Ag13, Ag10Au3, Ag8Au5, and Ag6Au7 clusters suggest that O2 is strongly activated by the clusters, while the activation of CO is much weak. Furthermore, the activation of O2 on AgAu cluster is stronger than that on pure Ag13 cluster, especially on Ag8Au5 cluster, due to the strengthened polarization of O–O bond. Compared to Ag13, Ag10Au3, and Ag6Au7 clusters, the lower energy barriers on Ag8Au5 cluster suggest a higher catalytic activity of Ag8Au5 cluster for O2 dissociation and CO oxidation reactions. The calculated results suggest that Ag8Au5 cluster could effectively reduce the carbon monoxide poisoning and exhibits the excellent catalytic performance for CO oxidation. Our study provides atomic-scale insights into the nature of the interfacial effects that determine CO oxidation on Ag–Au cluster catalysts.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36CrossRef Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36CrossRef
2.
Zurück zum Zitat Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef
3.
Zurück zum Zitat Kim HY, Kim HG, Kim DH, Lee HM (2008) Over stabilization of the metastable structure of isolated Ag–Pd bimetallic clusters. J Phys Chem C 112:17138–17142CrossRef Kim HY, Kim HG, Kim DH, Lee HM (2008) Over stabilization of the metastable structure of isolated Ag–Pd bimetallic clusters. J Phys Chem C 112:17138–17142CrossRef
4.
Zurück zum Zitat Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRef Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRef
5.
Zurück zum Zitat Gao Y, Shao N, Bulusu S, Zeng XC (2008) Effective CO oxidation on endohedral gold-cage nanoclusters. J Phys Chem C 112:8234–8238CrossRef Gao Y, Shao N, Bulusu S, Zeng XC (2008) Effective CO oxidation on endohedral gold-cage nanoclusters. J Phys Chem C 112:8234–8238CrossRef
6.
Zurück zum Zitat Liu X, Tian D, Ren S, Meng C (2015) Structure sensitivity of NO adsorption–dissociation on Pd n (n = 8, 13, 19, 25) Clusters. J Phys Chem C 119:12941–12948CrossRef Liu X, Tian D, Ren S, Meng C (2015) Structure sensitivity of NO adsorption–dissociation on Pd n (n = 8, 13, 19, 25) Clusters. J Phys Chem C 119:12941–12948CrossRef
7.
Zurück zum Zitat Rodriguez J (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24:223–287CrossRef Rodriguez J (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24:223–287CrossRef
8.
Zurück zum Zitat Deng L, Hu W, Deng H, Xiao S, Tang J (2011) Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J Phys Chem C 115:11355–11363CrossRef Deng L, Hu W, Deng H, Xiao S, Tang J (2011) Au–Ag bimetallic nanoparticles: surface segregation and atomic-scale structure. J Phys Chem C 115:11355–11363CrossRef
9.
Zurück zum Zitat Lozano XL, Mottet C, Weissker HC (2013) Effect of alloying on the optical properties of Ag–Au nanoparticles. J Phys Chem C 117:3062–3068CrossRef Lozano XL, Mottet C, Weissker HC (2013) Effect of alloying on the optical properties of Ag–Au nanoparticles. J Phys Chem C 117:3062–3068CrossRef
10.
Zurück zum Zitat Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CR, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996CrossRef Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CR, Gezelter JD (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996CrossRef
11.
Zurück zum Zitat Paramanik B, Patra A (2014) Fluorescent AuAg alloy clusters: synthesis and SERS applications. J Mater Chem C 2:3005–3012CrossRef Paramanik B, Patra A (2014) Fluorescent AuAg alloy clusters: synthesis and SERS applications. J Mater Chem C 2:3005–3012CrossRef
12.
Zurück zum Zitat Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of gold–silver binary cluster anions (Au n Ag m − , 2 ≤ n + m ≤ 4). J Chem Phys 115:3657–3663CrossRef Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of gold–silver binary cluster anions (Au n Ag m , 2 ≤ n + m ≤ 4). J Chem Phys 115:3657–3663CrossRef
13.
Zurück zum Zitat Weis P, Welz O, Vollmer E, Kappes MM (2004) Structures of mixed gold–silver cluster cations (Ag (m) Au (n)+, m + n < 6): ion mobility measurements and density-functional calculations. J Chem Phys 120:677–684CrossRef Weis P, Welz O, Vollmer E, Kappes MM (2004) Structures of mixed gold–silver cluster cations (Ag (m) Au (n)+, m + n < 6): ion mobility measurements and density-functional calculations. J Chem Phys 120:677–684CrossRef
14.
Zurück zum Zitat Bonacic-Koutecky V, Burda J, Mitric R, Ge MF, Zampella G, Fantucci P (2002) Density functional study of structural and electronic properties of bimetallic silver–gold clusters: comparison with pure gold and silver clusters. J Chem Phys 117:3120–3131CrossRef Bonacic-Koutecky V, Burda J, Mitric R, Ge MF, Zampella G, Fantucci P (2002) Density functional study of structural and electronic properties of bimetallic silver–gold clusters: comparison with pure gold and silver clusters. J Chem Phys 117:3120–3131CrossRef
15.
Zurück zum Zitat Zhao GF, Zeng Z (2006) Geometrical and electronic structures of Au m Ag n (2 ≤ m + n ≤ 8). J Chem Phys 125:014303–014314CrossRef Zhao GF, Zeng Z (2006) Geometrical and electronic structures of Au m Ag n (2 ≤ m + n ≤ 8). J Chem Phys 125:014303–014314CrossRef
16.
Zurück zum Zitat Tafoughalt M, Samah M (2012) Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Phys B 407:2014–2024CrossRef Tafoughalt M, Samah M (2012) Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Phys B 407:2014–2024CrossRef
17.
Zurück zum Zitat Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) Geometrical and electronic structures of gold, silver, and gold–silver binary clusters: origins of ductility of gold and gold–silver alloy formation. J Phys Chem B 107:9994–10005CrossRef Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) Geometrical and electronic structures of gold, silver, and gold–silver binary clusters: origins of ductility of gold and gold–silver alloy formation. J Phys Chem B 107:9994–10005CrossRef
18.
Zurück zum Zitat Tafoughalt M, Samah M (2014) Structural properties and relative stability of silver-doped gold clusters, AgAu n−1 (n = 3–13): density functional calculations. Comput Theor Chem 1033:23–30CrossRef Tafoughalt M, Samah M (2014) Structural properties and relative stability of silver-doped gold clusters, AgAu n−1 (n = 3–13): density functional calculations. Comput Theor Chem 1033:23–30CrossRef
19.
Zurück zum Zitat Chen F, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380CrossRef Chen F, Johnston RL (2008) Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties. Acta Mater 56:2374–2380CrossRef
20.
Zurück zum Zitat Zhao S, Ren Y, Ren Y, Wang J, Yin W (2010) Density functional study of hydrogen binding on gold and silver–gold clusters. J Phys Chem A 114:4917–4923CrossRef Zhao S, Ren Y, Ren Y, Wang J, Yin W (2010) Density functional study of hydrogen binding on gold and silver–gold clusters. J Phys Chem A 114:4917–4923CrossRef
21.
Zurück zum Zitat Cerbelaud M, Ferrando R, Barcaro G, Fortunelli (2011) Optimization of chemical ordering in AgAu nanoalloys. Phys Chem Chem Phys 13:10232–10240CrossRef Cerbelaud M, Ferrando R, Barcaro G, Fortunelli (2011) Optimization of chemical ordering in AgAu nanoalloys. Phys Chem Chem Phys 13:10232–10240CrossRef
22.
Zurück zum Zitat Bae GT, Aikens CM (2012) Time-dependent density functional theory studies of optical properties of Ag nanoparticles: octahedra, truncated octahedra, and icosahedra. J Phys Chem C 116:10356–10367CrossRef Bae GT, Aikens CM (2012) Time-dependent density functional theory studies of optical properties of Ag nanoparticles: octahedra, truncated octahedra, and icosahedra. J Phys Chem C 116:10356–10367CrossRef
23.
Zurück zum Zitat Aikens CM, Li S, Schatz GC (2008) From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J Phys Chem C 112:11272–11279CrossRef Aikens CM, Li S, Schatz GC (2008) From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. J Phys Chem C 112:11272–11279CrossRef
24.
Zurück zum Zitat Nigam S, Majumder C (2010) M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models. J Phys: Condens Matter 22:435001–435009 Nigam S, Majumder C (2010) M atom (M = Cu, Ag and Au) interaction with Ag and Au substrates: a first-principles study using cluster and slab models. J Phys: Condens Matter 22:435001–435009
25.
Zurück zum Zitat Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115:569–576CrossRef Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115:569–576CrossRef
26.
Zurück zum Zitat Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735CrossRef Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735CrossRef
27.
Zurück zum Zitat Liu JH, Wang AQ, Lin HP, Mou CY (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43CrossRef Liu JH, Wang AQ, Lin HP, Mou CY (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43CrossRef
28.
Zurück zum Zitat Wang AQ, Liu JH, Lin SD, Lin TS, Mou CY (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197CrossRef Wang AQ, Liu JH, Lin SD, Lin TS, Mou CY (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197CrossRef
29.
Zurück zum Zitat Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764CrossRef
30.
Zurück zum Zitat Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144CrossRef Kessi A, Delley B (1998) Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem 68:135–144CrossRef
31.
Zurück zum Zitat Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio molecular orbital theory. New York, Wiley Hehre WJ, Radom L, Schleyer PVR, Pople J (1986) Ab initio molecular orbital theory. New York, Wiley
32.
Zurück zum Zitat Baetzold RC (2007) Atomistic modeling of silver clusters formed on the surface of AgBr. J Phys Chem C 111:1385–1391CrossRef Baetzold RC (2007) Atomistic modeling of silver clusters formed on the surface of AgBr. J Phys Chem C 111:1385–1391CrossRef
33.
Zurück zum Zitat Gutta P, Hoffmann R (2003) Propensity of different AgBr surfaces for photoinduced silver cluster formation: a molecular orbital analysis. J Phys Chem A 107:8184–8190CrossRef Gutta P, Hoffmann R (2003) Propensity of different AgBr surfaces for photoinduced silver cluster formation: a molecular orbital analysis. J Phys Chem A 107:8184–8190CrossRef
34.
Zurück zum Zitat Das NK, Shoji T (2012) Geometry, orbital interaction, and oxygen chemisorption properties of chromium-doped nickel clusters. J Phys Chem C 116:13353–13367CrossRef Das NK, Shoji T (2012) Geometry, orbital interaction, and oxygen chemisorption properties of chromium-doped nickel clusters. J Phys Chem C 116:13353–13367CrossRef
35.
Zurück zum Zitat Sahoo S, Rollman G, Entel P (2006) Segregation and ordering in binary transition metal clusters. Phase Transit 9:693–700CrossRef Sahoo S, Rollman G, Entel P (2006) Segregation and ordering in binary transition metal clusters. Phase Transit 9:693–700CrossRef
36.
Zurück zum Zitat Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Israel J Chem 33:449–454CrossRef Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods to find transition states. Israel J Chem 33:449–454CrossRef
37.
Zurück zum Zitat Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRef Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56CrossRef
38.
Zurück zum Zitat Wang Y, Wu G, Yang M, Wang J (2013) Competition between Eley–Rideal and Langmuir–Hinshelwood pathways of CO oxidation on Cu n and Cu n O (n = 6, 7) clusters. J Phys Chem C 117:8767–8773CrossRef Wang Y, Wu G, Yang M, Wang J (2013) Competition between Eley–Rideal and Langmuir–Hinshelwood pathways of CO oxidation on Cu n and Cu n O (n = 6, 7) clusters. J Phys Chem C 117:8767–8773CrossRef
39.
Zurück zum Zitat Ho J, Ervin KM, Lineberger WC (1990) Photoelectron spectroscopy of metal cluster anions: Cu n − , Ag n − , and Au n − . J Chem Phys 93:6987–7002CrossRef Ho J, Ervin KM, Lineberger WC (1990) Photoelectron spectroscopy of metal cluster anions: Cu n , Ag n , and Au n . J Chem Phys 93:6987–7002CrossRef
40.
Zurück zum Zitat Taylor KJ, Pettiette-Hall CL, Chesnovsky O, Smalley RE (1992) Ultraviolet photoelectron spectra of coinage metal clusters. J Chem Phys 96:3319–3329CrossRef Taylor KJ, Pettiette-Hall CL, Chesnovsky O, Smalley RE (1992) Ultraviolet photoelectron spectra of coinage metal clusters. J Chem Phys 96:3319–3329CrossRef
41.
Zurück zum Zitat Handschuh H, Cha CY, Bechthold PS, Gantefo¨r G, Berhardt W (1995) Electronic shells or molecular orbitals: photoelectron spectra of Ag n − clusters. J Chem Phys 102:6406–6422CrossRef Handschuh H, Cha CY, Bechthold PS, Gantefo¨r G, Berhardt W (1995) Electronic shells or molecular orbitals: photoelectron spectra of Ag n clusters. J Chem Phys 102:6406–6422CrossRef
42.
Zurück zum Zitat Koutecky VB, Veyret V, Mitric R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450–10460CrossRef Koutecky VB, Veyret V, Mitric R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450–10460CrossRef
43.
Zurück zum Zitat Fournier R (2001) Theoretical study of the structure of silver clusters. J Chem Phys 115:2165–2177CrossRef Fournier R (2001) Theoretical study of the structure of silver clusters. J Chem Phys 115:2165–2177CrossRef
44.
Zurück zum Zitat Chi Y, Zhao L, Lu X, An C, Guo W, Liu Y, Lawrence WuCM (2015) Effects of subnanometer silver clusters on photocatalyst AgBr(110) surface: a theoretical investigation. Catal Sci Technol. doi:10.1039/C5CY00705D Chi Y, Zhao L, Lu X, An C, Guo W, Liu Y, Lawrence WuCM (2015) Effects of subnanometer silver clusters on photocatalyst AgBr(110) surface: a theoretical investigation. Catal Sci Technol. doi:10.​1039/​C5CY00705D
45.
Zurück zum Zitat Chen FY, Johnston RL (2007) Structure and spectral characteristics of the nanoalloy Ag3 Au10. Appl Phys Lett 90:153123CrossRef Chen FY, Johnston RL (2007) Structure and spectral characteristics of the nanoalloy Ag3 Au10. Appl Phys Lett 90:153123CrossRef
46.
Zurück zum Zitat Wang CC, Zhao RN, Han JG (2006) Geometries and magnetisms of the Zr (n)(n = 2–8) clusters: the density functional investigations. J Chem Phys 124:194301–194308CrossRef Wang CC, Zhao RN, Han JG (2006) Geometries and magnetisms of the Zr (n)(n = 2–8) clusters: the density functional investigations. J Chem Phys 124:194301–194308CrossRef
47.
Zurück zum Zitat Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Ag7Au6: A 13-atom alloy quantum cluster. Angew Chem Int Ed 51:2155–2159CrossRef Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Ag7Au6: A 13-atom alloy quantum cluster. Angew Chem Int Ed 51:2155–2159CrossRef
48.
Zurück zum Zitat Barron H, Fernández-Seivane L, Weissker HC, López-Lozano X (2013) Trends and properties of 13-atom Ag–Au nanoalloys I: structure and electronic properties. J Phys Chem C 117:21450–21459CrossRef Barron H, Fernández-Seivane L, Weissker HC, López-Lozano X (2013) Trends and properties of 13-atom Ag–Au nanoalloys I: structure and electronic properties. J Phys Chem C 117:21450–21459CrossRef
49.
Zurück zum Zitat Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Magic polyicosahedral core–shell clusters. Phys Rev Lett 93:105503–105506CrossRef Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Magic polyicosahedral core–shell clusters. Phys Rev Lett 93:105503–105506CrossRef
50.
Zurück zum Zitat Huang CJ, Ye XX, Chen C, Lin S, Xie DQ (2013) A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Comput Theor Chem 1011:5–10CrossRef Huang CJ, Ye XX, Chen C, Lin S, Xie DQ (2013) A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Comput Theor Chem 1011:5–10CrossRef
51.
Zurück zum Zitat Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331CrossRef Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601:5326–5331CrossRef
52.
Zurück zum Zitat Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) The CO oxidation mechanism and reactivity on PdZn alloys. Phys Chem Chem Phys 15:7768–7776CrossRef Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) The CO oxidation mechanism and reactivity on PdZn alloys. Phys Chem Chem Phys 15:7768–7776CrossRef
53.
Zurück zum Zitat Wang AQ, Chang CM, Mou CY (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867CrossRef Wang AQ, Chang CM, Mou CY (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867CrossRef
54.
Zurück zum Zitat Xie Y, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl Surf Sci 258:6391–6397CrossRef Xie Y, Huo YP, Zhang JM (2012) First-principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl Surf Sci 258:6391–6397CrossRef
Metadaten
Titel
Effect of alloying on the stabilities and catalytic properties of Ag–Au bimetallic subnanoclusters: a theoretical investigation
verfasst von
Yuhua Chi
Lianming Zhao
Xiaoqing Lu
Changhua An
Wenyue Guo
Chi-Man Lawrence Wu
Publikationsdatum
23.02.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-9808-8

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Science 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.