Skip to main content
Erschienen in: Electrical Engineering 1/2017

10.08.2016 | Original Paper

Effect of armature reaction on the core losses of the permanent magnet synchronous motor

verfasst von: Vesa Ruuskanen

Erschienen in: Electrical Engineering | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditionally, the core losses of permanent magnet synchronous motors are assumed to vary as a function of rotational speed and the supply voltage. In this paper, the effect of armature reaction on the core losses under constant speed and stator voltage is studied. The load angle of the machine is varied, and the core losses are determined using the finite element analysis. To explain the core loss results, the flux densities with harmonic analyses in different parts of the machine are studied and discussed. It is found out that armature reaction should be taken into account if a high-accuracy core loss prediction is required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akatsu K, Narita K, Sakashita Y, Yamada T (2009) Impact of flux weakening current to the iron loss in an IPMSM including PWM carrier effect. In: Proc. 2009 IEEE Energy conversion congress and exposition (ECCE ’09), San Jose, pp 1927–1932. doi:10.1109/ECCE.2009.5316476 Akatsu K, Narita K, Sakashita Y, Yamada T (2009) Impact of flux weakening current to the iron loss in an IPMSM including PWM carrier effect. In: Proc. 2009 IEEE Energy conversion congress and exposition (ECCE ’09), San Jose, pp 1927–1932. doi:10.​1109/​ECCE.​2009.​5316476
3.
Zurück zum Zitat Buecherl D, Herzog H (2010) Iron loss modeling by complex inductances for steady state simulation of electrical machines. In: Proc. 2010 Int. Symp. on Power Electron. Elect. Drives Autom. and Motion (SPEEDAM ‘10), Pisa, pp 878–883. doi:10.1109/SPEEDAM.2010.5545096 Buecherl D, Herzog H (2010) Iron loss modeling by complex inductances for steady state simulation of electrical machines. In: Proc. 2010 Int. Symp. on Power Electron. Elect. Drives Autom. and Motion (SPEEDAM ‘10), Pisa, pp 878–883. doi:10.​1109/​SPEEDAM.​2010.​5545096
4.
Zurück zum Zitat Cavallaro C, Di Tommaso A, Miceli R, Raciti A, Galluzzo G, Trapanese M (2005) Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches. IEEE Trans Ind Electron 52(4):1153–1160. doi:10.1109/TIE.2005.851595 CrossRef Cavallaro C, Di Tommaso A, Miceli R, Raciti A, Galluzzo G, Trapanese M (2005) Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches. IEEE Trans Ind Electron 52(4):1153–1160. doi:10.​1109/​TIE.​2005.​851595 CrossRef
5.
Zurück zum Zitat Chen L, Wang J, Lazari P, Chen X (2013) Optimizations of a permanent magnet machine targeting different driving cycles for electric vehicles. In: Proc. 2013 IEEE Int. Elect. Mach. Drives Conf. (IEMDC‘13), Chicago, pp 855–862. doi:10.1109/IEMDC.2013.6556198 Chen L, Wang J, Lazari P, Chen X (2013) Optimizations of a permanent magnet machine targeting different driving cycles for electric vehicles. In: Proc. 2013 IEEE Int. Elect. Mach. Drives Conf. (IEMDC‘13), Chicago, pp 855–862. doi:10.​1109/​IEMDC.​2013.​6556198
7.
Zurück zum Zitat Gautreau T (2005) Estimation des pertes fer dans les machines electriques. model d’hysteresis loss surface et application aux machines synchrones a aimants. PhD thesis, Grenoble Institute of Technology Gautreau T (2005) Estimation des pertes fer dans les machines electriques. model d’hysteresis loss surface et application aux machines synchrones a aimants. PhD thesis, Grenoble Institute of Technology
9.
Zurück zum Zitat Hämäläinen H, Pyrhönen J, Nerg J (2010) Effects of quadrature axis armature reaction on magnetic circuit time harmonics and stator iron losses in a permanent magnet synchronous generator with embedded magnets. Int Rev Electr Eng 5(5):2057–2062 Hämäläinen H, Pyrhönen J, Nerg J (2010) Effects of quadrature axis armature reaction on magnetic circuit time harmonics and stator iron losses in a permanent magnet synchronous generator with embedded magnets. Int Rev Electr Eng 5(5):2057–2062
10.
11.
Zurück zum Zitat Ionel D, Popescu M, Dellinger S, Miller TJE, Heideman R, McGilp M (2006) On the variation with flux and frequency of the core loss coefficients in electrical machines. IEEE Trans Ind Appl 42(3):658–667. doi:10.1109/TIA.2006.872941 CrossRef Ionel D, Popescu M, Dellinger S, Miller TJE, Heideman R, McGilp M (2006) On the variation with flux and frequency of the core loss coefficients in electrical machines. IEEE Trans Ind Appl 42(3):658–667. doi:10.​1109/​TIA.​2006.​872941 CrossRef
12.
Zurück zum Zitat Lazari P, Wang J, Chen L (2012) A computationally efficient design technique for electric vehicle traction machines. In: Proc. 20th Int. Conf. on Elect. Mach. (ICEM ‘12), Marseille, pp 2596–2602. doi:10.1109/ICElMach.2012.6350251 Lazari P, Wang J, Chen L (2012) A computationally efficient design technique for electric vehicle traction machines. In: Proc. 20th Int. Conf. on Elect. Mach. (ICEM ‘12), Marseille, pp 2596–2602. doi:10.​1109/​ICElMach.​2012.​6350251
13.
Zurück zum Zitat Lee BH, Kwon SO, Sun T, Hong JP, Lee GH, Hur J (2011) Modeling of core loss resistance for d-q equivalent circuit analysis of IPMSM considering harmonic linkage flux. IEEE Trans Magn 47(5):1066–1069. doi:10.1109/TMAG.2010.2099647 CrossRef Lee BH, Kwon SO, Sun T, Hong JP, Lee GH, Hur J (2011) Modeling of core loss resistance for d-q equivalent circuit analysis of IPMSM considering harmonic linkage flux. IEEE Trans Magn 47(5):1066–1069. doi:10.​1109/​TMAG.​2010.​2099647 CrossRef
16.
Zurück zum Zitat Nerg J, Rilla M, Ruuskanen V, Pyrhönen J, Ruotsalainen S (2014) Direct-driven interior magnet permanent magnet synchronous motors for a full electric sports car. IEEE Trans Ind Electron 61(8):4286–4294. doi:10.1109/TIE.2013.2248340 CrossRef Nerg J, Rilla M, Ruuskanen V, Pyrhönen J, Ruotsalainen S (2014) Direct-driven interior magnet permanent magnet synchronous motors for a full electric sports car. IEEE Trans Ind Electron 61(8):4286–4294. doi:10.​1109/​TIE.​2013.​2248340 CrossRef
18.
Zurück zum Zitat Ruuskanen V, Immonen P, Nerg J, Pyrhönen J (2012) Determining electrical efficiency of permanent magnet synchronous machines with different control methods. Electr Eng (Archiv für Elektrotechnik) 94(2):97–106 Ruuskanen V, Immonen P, Nerg J, Pyrhönen J (2012) Determining electrical efficiency of permanent magnet synchronous machines with different control methods. Electr Eng (Archiv für Elektrotechnik) 94(2):97–106
19.
Zurück zum Zitat Ruuskanen V, Nerg J, Pyrhönen J, Ruotsalainen S, Kennel R (2015) Drive cycle analysis of a permanent magnet traction motor based on magnetostatic finite element analysis. IEEE Trans Veh Technol 64(3):1249–1254. doi:10.1109/TVT.2014.2329014 CrossRef Ruuskanen V, Nerg J, Pyrhönen J, Ruotsalainen S, Kennel R (2015) Drive cycle analysis of a permanent magnet traction motor based on magnetostatic finite element analysis. IEEE Trans Veh Technol 64(3):1249–1254. doi:10.​1109/​TVT.​2014.​2329014 CrossRef
20.
Zurück zum Zitat Ruuskanen V, Nerg J, Rilla M, Pyrhönen J (2016) Iron loss analysis of the permanent-magnet synchronous machine based on finite-element analysis over the electrical vehicle drive cycle. IEEE Trans Ind Electron 63(7):4129–4136. doi:10.1109/TIE.2016.2549005 CrossRef Ruuskanen V, Nerg J, Rilla M, Pyrhönen J (2016) Iron loss analysis of the permanent-magnet synchronous machine based on finite-element analysis over the electrical vehicle drive cycle. IEEE Trans Ind Electron 63(7):4129–4136. doi:10.​1109/​TIE.​2016.​2549005 CrossRef
21.
Zurück zum Zitat de Santiago J, Bernhoff H, Ekergåd B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2012) Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans Veh Technol 61(2):475–484. doi:10.1109/TVT.2011.2177873 CrossRef de Santiago J, Bernhoff H, Ekergåd B, Eriksson S, Ferhatovic S, Waters R, Leijon M (2012) Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans Veh Technol 61(2):475–484. doi:10.​1109/​TVT.​2011.​2177873 CrossRef
22.
Zurück zum Zitat Schofield N, Giraud-Audine C (2005) Design procedure for brushless PM traction machines for electric vehicle applications. In: Proc. 2005 IEEE Int. Conf. on Elect. Mach. and Drives. (IEMDC ‘05), San Antonio, pp 1788–1792. doi:10.1109/IEMDC.2005.195962 Schofield N, Giraud-Audine C (2005) Design procedure for brushless PM traction machines for electric vehicle applications. In: Proc. 2005 IEEE Int. Conf. on Elect. Mach. and Drives. (IEMDC ‘05), San Antonio, pp 1788–1792. doi:10.​1109/​IEMDC.​2005.​195962
24.
Zurück zum Zitat Sheikh-Ghalavand B, Vaez-Zadeh S, Isfahani A (2010) An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors. IEEE Trans Magn 46(1):112–120. doi:10.1109/TMAG.2009.2030674 CrossRef Sheikh-Ghalavand B, Vaez-Zadeh S, Isfahani A (2010) An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors. IEEE Trans Magn 46(1):112–120. doi:10.​1109/​TMAG.​2009.​2030674 CrossRef
25.
Zurück zum Zitat Stumberger B, Hamler A, Hribernik B (2000) Analysis of iron loss in interior permanent magnet synchronous motor over a wide-speed range of constant output power operation. IEEE Trans Magn 36(4):1846–1849. doi:10.1109/20.877804 CrossRef Stumberger B, Hamler A, Hribernik B (2000) Analysis of iron loss in interior permanent magnet synchronous motor over a wide-speed range of constant output power operation. IEEE Trans Magn 36(4):1846–1849. doi:10.​1109/​20.​877804 CrossRef
26.
Zurück zum Zitat Tang C, Soong W, Liew G, Ertugrul N, Jahns T (2013) Analysis of stator iron loss in interior pm machines under open and short-circuit conditions. In: 2013 IEEE Energy Conv. Cong. and Exp. (ECCE‘13), Denver, pp 1227–1234. doi:10.1109/ECCE.2013.6646845 Tang C, Soong W, Liew G, Ertugrul N, Jahns T (2013) Analysis of stator iron loss in interior pm machines under open and short-circuit conditions. In: 2013 IEEE Energy Conv. Cong. and Exp. (ECCE‘13), Denver, pp 1227–1234. doi:10.​1109/​ECCE.​2013.​6646845
28.
Zurück zum Zitat Wang J, Yuan X, Atallah K (2013) Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications. IEEE Trans Veh Technol 62(3):1053–1064. doi:10.1109/TVT.2012.2227867 CrossRef Wang J, Yuan X, Atallah K (2013) Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications. IEEE Trans Veh Technol 62(3):1053–1064. doi:10.​1109/​TVT.​2012.​2227867 CrossRef
29.
Zurück zum Zitat Williamson S, Lukic S, Emadi A (2006) Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans Power Electron 21(3):730–740. doi:10.1109/TPEL.2006.872388 CrossRef Williamson S, Lukic S, Emadi A (2006) Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans Power Electron 21(3):730–740. doi:10.​1109/​TPEL.​2006.​872388 CrossRef
31.
Zurück zum Zitat Yamazaki K, Kumagai M, Ikemi T, Ohki S (2013) A novel rotor design of interior permanent-magnet synchronous motors to cope with both maximum torque and iron-loss reduction. IEEE Trans Ind Appl 49(6):2478–2486. doi:10.1109/TIA.2013.2262662 Yamazaki K, Kumagai M, Ikemi T, Ohki S (2013) A novel rotor design of interior permanent-magnet synchronous motors to cope with both maximum torque and iron-loss reduction. IEEE Trans Ind Appl 49(6):2478–2486. doi:10.​1109/​TIA.​2013.​2262662
32.
Zurück zum Zitat Zhu S, Cheng M, Dong J, Du J (2014) Core loss analysis and calculation of stator permanent magnet machine considering dc-biased magnetic induction. IEEE Trans Ind Electron 61(10):5203–5212. doi:10.1109/TIE.2014.2300062 CrossRef Zhu S, Cheng M, Dong J, Du J (2014) Core loss analysis and calculation of stator permanent magnet machine considering dc-biased magnetic induction. IEEE Trans Ind Electron 61(10):5203–5212. doi:10.​1109/​TIE.​2014.​2300062 CrossRef
Metadaten
Titel
Effect of armature reaction on the core losses of the permanent magnet synchronous motor
verfasst von
Vesa Ruuskanen
Publikationsdatum
10.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2017
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-016-0401-6

Weitere Artikel der Ausgabe 1/2017

Electrical Engineering 1/2017 Zur Ausgabe

Neuer Inhalt