Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2019

07.05.2019

Effect of barium lanthanum manganite nano particle on the electric transport properties of polypyrrole at room temperature

verfasst von: M. G. Smitha, M. V. Murugendrappa

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Barium lanthanum manganite (La0.7Ba0.3MnO3: LBM) synthesized by Sol–Gel method was studied as a composite material with organic conducting polymer polypyrrole (PPy) synthesized by in situ chemical oxidation method. Characterizations like SEM, TEM, FTIR and XRD were studied. Electrical conductivity and transport studies like dielectric constant, dielectric loss, complex electric and impedance modulus were analyzed using LCR impedance analyzer at room temperature in the frequency range 100 Hz–5 MHz. SEM and TEM images of LBM nano particle shows agglomerated orthorhombic structure, PPy forms clusters with spherical shape and PPy/LBM nano composites shows spherical structure with LBM embedded in PPy chain and with reduction of volume fraction. XRD of LBM shows the orthorhombic crystal structure, PPy confirms the amorphous nature and PPy/LBM nano composites shows semi crystalline phase. Electrical conductivity measurements of all the samples show relaxing behavior. Transport properties show good dielectric constant value with a very low dielectric loss for PPY/LBM nano composites than pure PPy. The highest dielectric constant value was observed for PPy/LBM40 nano composite the value being 171 at 10 kHz corresponding dielectric loss is 0.43 which is less when compared to pure PPy having dielectric constant 130 at 10 kHz and dielectric loss being 1.13. The complex electric and impedance modulus shows both grain and grain boundary effects. The study shows that by incorporating LBM nano particle in the PPy chain shows better value than as prepared PPy sample. Also when compared to our previous work on calcium doped lanthanum manganite (LCM) with polypyrrole as host the composite of PPy/LBM showed better electrical conductivity and transport properties. Thus incorporation of LBM nano particle to the PPy chain has resulted in the enhancement of electric transport properties. The present work reveals that the PPy/LBM nano composite can also be a promising material as an electrical storage device as well its application as an organic transistor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.-R. Wenk, A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University Press, New York, 2004). ISBN 978-0-521-52958-7CrossRef H.-R. Wenk, A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University Press, New York, 2004). ISBN 978-0-521-52958-7CrossRef
2.
Zurück zum Zitat G.H. Haertling, Ferroelectric ceramics: history and technology. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRef G.H. Haertling, Ferroelectric ceramics: history and technology. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRef
3.
Zurück zum Zitat B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press, London and New York, 1971) B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press, London and New York, 1971)
4.
Zurück zum Zitat G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, A.I. Sokolov, Ferroelectrics and Related Material’s (Gordon and Breach Science Publishers, New York, 1984) G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, A.I. Sokolov, Ferroelectrics and Related Material’s (Gordon and Breach Science Publishers, New York, 1984)
5.
Zurück zum Zitat J. Mark, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)CrossRef J. Mark, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)CrossRef
6.
Zurück zum Zitat M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magneto resistance of (001) Fe/(001)Cr magnetic super lattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magneto resistance of (001) Fe/(001)Cr magnetic super lattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)CrossRef
7.
Zurück zum Zitat A.G. Bhavani, W.Y. Kim, J.S. Lee, Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 3(7), 1537–1544 (2013)CrossRef A.G. Bhavani, W.Y. Kim, J.S. Lee, Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 3(7), 1537–1544 (2013)CrossRef
8.
Zurück zum Zitat M.D. Bhatt, G. Lee, J.S. Lee, Oxygen reduction reaction mechanisms on Al-doped X-graphene (X = N, P, and S) catalysts in acidic medium: a comparative DFT study. J. Phys. Chem. C 120(46), 26435–26441 (2016)CrossRef M.D. Bhatt, G. Lee, J.S. Lee, Oxygen reduction reaction mechanisms on Al-doped X-graphene (X = N, P, and S) catalysts in acidic medium: a comparative DFT study. J. Phys. Chem. C 120(46), 26435–26441 (2016)CrossRef
9.
Zurück zum Zitat M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)CrossRef M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)CrossRef
10.
Zurück zum Zitat S.O. Manjunatha, A. Rao, G.S. Okram, Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2−xBaxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 640, 154–161 (2015)CrossRef S.O. Manjunatha, A. Rao, G.S. Okram, Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2−xBaxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 640, 154–161 (2015)CrossRef
11.
Zurück zum Zitat S.O. Manjunatha, A. Rao, T.-Y. Lin, C.-M. Chang, Y.-K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35xBaxMnO3 (0 6 × 6 0.25) manganites. J. Alloys Compd. 619, 303–310 (2015)CrossRef S.O. Manjunatha, A. Rao, T.-Y. Lin, C.-M. Chang, Y.-K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35xBaxMnO3 (0 6 × 6 0.25) manganites. J. Alloys Compd. 619, 303–310 (2015)CrossRef
12.
Zurück zum Zitat F. Ayadi, Y. Regaieg, W. Cheikhrouhou, M. Koubaa, A. Cheikhrouhou, H.L. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magneto caloric properties. J. Magn. Magn. Mater. 381, 215–220 (2015)CrossRef F. Ayadi, Y. Regaieg, W. Cheikhrouhou, M. Koubaa, A. Cheikhrouhou, H.L. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magneto caloric properties. J. Magn. Magn. Mater. 381, 215–220 (2015)CrossRef
13.
Zurück zum Zitat Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ion. 48(3–4), 207–212 (1991)CrossRef Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ion. 48(3–4), 207–212 (1991)CrossRef
14.
Zurück zum Zitat M.P. van Dijk, J.H.H. ter Maat, G. Roelofs, H. Bosch, G.M.H. van de Velde, P.J. Gellings, A.J. Burggraaf, Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure part I: synthesis, characterization and conductivity. Mater. Res. Bull 19, 1149–1156 (1984)CrossRef M.P. van Dijk, J.H.H. ter Maat, G. Roelofs, H. Bosch, G.M.H. van de Velde, P.J. Gellings, A.J. Burggraaf, Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure part I: synthesis, characterization and conductivity. Mater. Res. Bull 19, 1149–1156 (1984)CrossRef
15.
Zurück zum Zitat K. Chen, Z. Lu, X. Chen, N. Ai, X. Huang, X. Du, W. Su, Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films. J. Power Sources 172(2), 742–748 (2007)CrossRef K. Chen, Z. Lu, X. Chen, N. Ai, X. Huang, X. Du, W. Su, Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films. J. Power Sources 172(2), 742–748 (2007)CrossRef
16.
Zurück zum Zitat L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 76(3–4), 259–271 (1995)CrossRef L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 76(3–4), 259–271 (1995)CrossRef
17.
Zurück zum Zitat L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion. 76(3–4), 273–283 (1995)CrossRef L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion. 76(3–4), 273–283 (1995)CrossRef
18.
Zurück zum Zitat C. Xia, W. Rauch, F. Chen, M. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ion. 149(1–2), 11–19 (2002)CrossRef C. Xia, W. Rauch, F. Chen, M. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ion. 149(1–2), 11–19 (2002)CrossRef
19.
Zurück zum Zitat C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973), 1624–1627 (2010)CrossRef C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973), 1624–1627 (2010)CrossRef
20.
Zurück zum Zitat S. Seema, M.V.N. AmbikaPrasad, Dielectric spectroscopy of nanostructured polypyrrole-NiO composites. J. Polym. 950304, 5 (2014) S. Seema, M.V.N. AmbikaPrasad, Dielectric spectroscopy of nanostructured polypyrrole-NiO composites. J. Polym. 950304, 5 (2014)
21.
Zurück zum Zitat H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)CrossRef H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)CrossRef
22.
Zurück zum Zitat A.J. Heeger, The fourth generation of polymeric materials semiconducting and metallic polymers. Rev. Mod. Phys. 73(3), 681–700 (2001)CrossRef A.J. Heeger, The fourth generation of polymeric materials semiconducting and metallic polymers. Rev. Mod. Phys. 73(3), 681–700 (2001)CrossRef
23.
Zurück zum Zitat A. Kassim, H.N.M.E. Mahmud, F. Adzmi, Polypyrrole montmorillonite clay composites: an organic semiconductor. Mater. Sci. Semicond. Process. 10(6), 246–251 (2007)CrossRef A. Kassim, H.N.M.E. Mahmud, F. Adzmi, Polypyrrole montmorillonite clay composites: an organic semiconductor. Mater. Sci. Semicond. Process. 10(6), 246–251 (2007)CrossRef
24.
Zurück zum Zitat A.G.B. da Cruz, J.L. Wardell, A.M. Rocco, A novel material obtained by electro polymerization of polypyrrole doped with [Sn(dmit)3]2-,[tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2. Synth. Met. 156(5–6), 396–404 (2006)CrossRef A.G.B. da Cruz, J.L. Wardell, A.M. Rocco, A novel material obtained by electro polymerization of polypyrrole doped with [Sn(dmit)3]2-,[tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2. Synth. Met. 156(5–6), 396–404 (2006)CrossRef
25.
Zurück zum Zitat C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)CrossRef C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)CrossRef
26.
Zurück zum Zitat P. Papazoglou, E. Eleftheriou, V.T. Zaspalis, Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz. J. Magn. Magn. Mater. 296(1), 25–31 (2006)CrossRef P. Papazoglou, E. Eleftheriou, V.T. Zaspalis, Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz. J. Magn. Magn. Mater. 296(1), 25–31 (2006)CrossRef
27.
Zurück zum Zitat S.S. Shinde, J.A. Kher, M.V. Kulkarni, Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. J. Innov. Res. Sci. Eng. Technol. 3, 2319–8753 (2014) S.S. Shinde, J.A. Kher, M.V. Kulkarni, Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. J. Innov. Res. Sci. Eng. Technol. 3, 2319–8753 (2014)
28.
Zurück zum Zitat J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564 (1955)CrossRef J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564 (1955)CrossRef
29.
Zurück zum Zitat S.K. Singh, S.B. Palmer, D. Mck Paul, M.R. Lees, Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 69, 263 (1996)CrossRef S.K. Singh, S.B. Palmer, D. Mck Paul, M.R. Lees, Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 69, 263 (1996)CrossRef
30.
Zurück zum Zitat R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magneto resistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)CrossRef R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magneto resistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)CrossRef
31.
Zurück zum Zitat C. Liao, M. Zhang, M.Y. Yao, T. Hua, L. Li, F. Yan, Flexible organic electronics in biology: materials and devices. Adv. Mater. 27, 7493–7527 (2015)CrossRef C. Liao, M. Zhang, M.Y. Yao, T. Hua, L. Li, F. Yan, Flexible organic electronics in biology: materials and devices. Adv. Mater. 27, 7493–7527 (2015)CrossRef
32.
Zurück zum Zitat X. Strakosas, M. Bongo, R.M. Owens, The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015)CrossRef X. Strakosas, M. Bongo, R.M. Owens, The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015)CrossRef
33.
Zurück zum Zitat A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Jpn. J. Appl. Phys. 55, 04EA08 (2016)CrossRef A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Jpn. J. Appl. Phys. 55, 04EA08 (2016)CrossRef
34.
Zurück zum Zitat J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018)CrossRef J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018)CrossRef
37.
Zurück zum Zitat M. Phan, S. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 310–325 (2007)CrossRef M. Phan, S. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 310–325 (2007)CrossRef
38.
Zurück zum Zitat S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. 47, 420–428 (2012)CrossRef S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. 47, 420–428 (2012)CrossRef
39.
Zurück zum Zitat E.L. Wolf, Nanophysics and Nanotechnology (Wiley, Weinheim, 2004) E.L. Wolf, Nanophysics and Nanotechnology (Wiley, Weinheim, 2004)
40.
Zurück zum Zitat M. G. Smitha, M. V. Murugendrappa, Transport and complex modulus study of La0.7Ca0.3MnO3 perovskite manganite nano-compound with polypyrrole as host. Polym. Bull. 1–18 (2018) M. G. Smitha, M. V. Murugendrappa, Transport and complex modulus study of La0.7Ca0.3MnO3 perovskite manganite nano-compound with polypyrrole as host. Polym. Bull. 1–18 (2018)
41.
Zurück zum Zitat W. Cherif, M. Ellouze, F. Elhalouani, A.-F. Lehlooh, Synthesis and characterization of fine particles of La0.7Ca0.3MnO3 prepared by the mechanical ball milling method. Eur. Phys. J. Plus 73, 127 (2012) W. Cherif, M. Ellouze, F. Elhalouani, A.-F. Lehlooh, Synthesis and characterization of fine particles of La0.7Ca0.3MnO3 prepared by the mechanical ball milling method. Eur. Phys. J. Plus 73, 127 (2012)
42.
Zurück zum Zitat H. Taguchi, D. Matsuda, M. Nagano, K. Tanihata, Y. Miyamoto, Synthesis of perovskite‐type (La1−xSrx) MnO3 (O X 0.3) at low temperature. J. Am. Ceram. Soc. 75, 201 (1992)CrossRef H. Taguchi, D. Matsuda, M. Nagano, K. Tanihata, Y. Miyamoto, Synthesis of perovskite‐type (La1−xSrx) MnO3 (O X 0.3) at low temperature. J. Am. Ceram. Soc. 75, 201 (1992)CrossRef
43.
Zurück zum Zitat M. Ramezani, S.M. Hosseinpour-Mashkani, Controlled synthesis, characterization, and photocatalytic application of Co2TiO4 nanoparticles. J. Electron. Mater. 46(2), 1371–1377 (2017)CrossRef M. Ramezani, S.M. Hosseinpour-Mashkani, Controlled synthesis, characterization, and photocatalytic application of Co2TiO4 nanoparticles. J. Electron. Mater. 46(2), 1371–1377 (2017)CrossRef
44.
Zurück zum Zitat M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkan, Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(7), 4848–4853 (2015) M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkan, Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(7), 4848–4853 (2015)
45.
Zurück zum Zitat S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(8), 6086–6091 (2015) S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(8), 6086–6091 (2015)
46.
Zurück zum Zitat M.V. Murugendrappa, M.V.N. AmbikaPrasad, Chemical synthesis, characterization, and direct-current conductivity studies of polypyrrole/γ-Fe2O3 composites. J. Appl. Polym. Sci. 103, 2797–2801 (2007)CrossRef M.V. Murugendrappa, M.V.N. AmbikaPrasad, Chemical synthesis, characterization, and direct-current conductivity studies of polypyrrole/γ-Fe2O3 composites. J. Appl. Polym. Sci. 103, 2797–2801 (2007)CrossRef
47.
Zurück zum Zitat H. Eisazadeh, Studying the characteristics of polypyr-role and its composites. World J. Chem. 2(2), 67–74 (2007) H. Eisazadeh, Studying the characteristics of polypyr-role and its composites. World J. Chem. 2(2), 67–74 (2007)
48.
Zurück zum Zitat B. Kurniawan, S. Winarsih, C. Kurniawan, M. R. Ramadhan, and F. Ruli, The effect of Ca-doping on structure and microstructure of La0.7(Ba1-xCax)0.3MnO3. In: AIP Conference Proceedings 1862, 030054. https://doi.org/10.1063/1.4991158 (2017) B. Kurniawan, S. Winarsih, C. Kurniawan, M. R. Ramadhan, and F. Ruli, The effect of Ca-doping on structure and microstructure of La0.7(Ba1-xCax)0.3MnO3. In: AIP Conference Proceedings 1862, 030054. https://​doi.​org/​10.​1063/​1.​4991158 (2017)
49.
Zurück zum Zitat A.S. Priya, I.B. ShameemBanu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Mater. Lett. 142(1), 42–44 (2015)CrossRef A.S. Priya, I.B. ShameemBanu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Mater. Lett. 142(1), 42–44 (2015)CrossRef
50.
Zurück zum Zitat X.W. Wang, X.E. Wang, Y.P. Liu, Y.Y. Kong, L.Y. Sun, Y.C. Hu, Q.Q. Zhu, Hydrothermal process fabrication of NiO–NiCoO2–Co3O4 composites used as super capacitor materials. J. Mater. Sci. 28(20), 14928–14934 (2017) X.W. Wang, X.E. Wang, Y.P. Liu, Y.Y. Kong, L.Y. Sun, Y.C. Hu, Q.Q. Zhu, Hydrothermal process fabrication of NiO–NiCoO2–Co3O4 composites used as super capacitor materials. J. Mater. Sci. 28(20), 14928–14934 (2017)
51.
Zurück zum Zitat M. Valian, F. Beshkar, M. Salavati-Niasari, ‘Novel preparation of ultrafine MnCo1.75Fe0.25O4 nanostructures for the photodegradation of Acid Red 88. J. Mater. Sci. 20, 14996–15003 (2017) M. Valian, F. Beshkar, M. Salavati-Niasari, ‘Novel preparation of ultrafine MnCo1.75Fe0.25O4 nanostructures for the photodegradation of Acid Red 88. J. Mater. Sci. 20, 14996–15003 (2017)
52.
Zurück zum Zitat B.V. Chaluvaraju, K. Ganiger Sangappa, M.V. Murugendrappa, Thermo-electric power study of polypyrrole/molybdenum trioxide composites. Polym. Sci. A 57(4), 467–472 (2015)CrossRef B.V. Chaluvaraju, K. Ganiger Sangappa, M.V. Murugendrappa, Thermo-electric power study of polypyrrole/molybdenum trioxide composites. Polym. Sci. A 57(4), 467–472 (2015)CrossRef
53.
Zurück zum Zitat N. Kumar, N. Bastola, S. Kumar, R. Ranjan, Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system. J. Mater. Sci. 28(14), 10420–10426 (2017) N. Kumar, N. Bastola, S. Kumar, R. Ranjan, Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system. J. Mater. Sci. 28(14), 10420–10426 (2017)
54.
Zurück zum Zitat T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, Facile synthesis of blue anatase TiO2 films by solvent evaporation method. J. Mater. Sci. 20, 15074–15080 (2017) T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, Facile synthesis of blue anatase TiO2 films by solvent evaporation method. J. Mater. Sci. 20, 15074–15080 (2017)
55.
Zurück zum Zitat A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. Cryst. Eng. Commun. 20, 1716–1730 (2018)CrossRef A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. Cryst. Eng. Commun. 20, 1716–1730 (2018)CrossRef
56.
Zurück zum Zitat A.S. Hassanien, A.A. Akl, Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Cryst. Solids 487(1), 28–36 (2018)CrossRef A.S. Hassanien, A.A. Akl, Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Cryst. Solids 487(1), 28–36 (2018)CrossRef
57.
Zurück zum Zitat A.S. Hassanien, A.A. Akl, Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J. Non-Cryst. Solids 432, 471–479 (2016)CrossRef A.S. Hassanien, A.A. Akl, Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J. Non-Cryst. Solids 432, 471–479 (2016)CrossRef
58.
Zurück zum Zitat V.S. ReddyChannu, R. Holze, Synthesis and characterization of a polyaniline-modified SnO2 nano composite. Ionics 18, 495–500 (2012)CrossRef V.S. ReddyChannu, R. Holze, Synthesis and characterization of a polyaniline-modified SnO2 nano composite. Ionics 18, 495–500 (2012)CrossRef
59.
Zurück zum Zitat V. Efremov, J. van den Brink, D.I. Khomskii, Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater. 3(12), 853 (2004)CrossRef V. Efremov, J. van den Brink, D.I. Khomskii, Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater. 3(12), 853 (2004)CrossRef
60.
Zurück zum Zitat S.R. Elliott, Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ion. 70–71(1), 27–40 (1994)CrossRef S.R. Elliott, Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ion. 70–71(1), 27–40 (1994)CrossRef
61.
Zurück zum Zitat W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67, 1559 (1994)CrossRef W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67, 1559 (1994)CrossRef
62.
Zurück zum Zitat V.B. Aaditya, B.M. Bharathesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendr, M.V. Murugendrappa, Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites. J. Mater. Sci. 4, 2848–2859 (2018) V.B. Aaditya, B.M. Bharathesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendr, M.V. Murugendrappa, Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites. J. Mater. Sci. 4, 2848–2859 (2018)
63.
Zurück zum Zitat H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Pol. A 122(1), 174 (2012)CrossRef H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Pol. A 122(1), 174 (2012)CrossRef
64.
Zurück zum Zitat A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)CrossRef A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)CrossRef
65.
Zurück zum Zitat S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films. J. Mater. Sci. 28(18), 13344–13349 (2017) S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films. J. Mater. Sci. 28(18), 13344–13349 (2017)
66.
Zurück zum Zitat B. Roling, Scaling properties of the conductivity spectra of glasses and super cooled melts. Solid State Ion. 105(4), 185–193 (1998)CrossRef B. Roling, Scaling properties of the conductivity spectra of glasses and super cooled melts. Solid State Ion. 105(4), 185–193 (1998)CrossRef
67.
Zurück zum Zitat J. Liu, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)CrossRef J. Liu, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)CrossRef
68.
Zurück zum Zitat R. Gopalakrishnan, B.V.R. Chowdari, K.L. Tan, Electrical and structural characterization of the xCuO:(1 − x)V2O5. Solid State Ion. 53–56, 1168–1171 (1992)CrossRef R. Gopalakrishnan, B.V.R. Chowdari, K.L. Tan, Electrical and structural characterization of the xCuO:(1 − x)V2O5. Solid State Ion. 53–56, 1168–1171 (1992)CrossRef
69.
Zurück zum Zitat N. Sdiri, B. Chem, E. Dhahri, Optical investigations of La0.7Ca0.3−xKxMnO3 (x = 0.00, 0.05 and 0.10) probed by spectroscopic ellipsometry. Ceramics 56(2), 95–101 (2012) N. Sdiri, B. Chem, E. Dhahri, Optical investigations of La0.7Ca0.3−xKxMnO3 (x = 0.00, 0.05 and 0.10) probed by spectroscopic ellipsometry. Ceramics 56(2), 95–101 (2012)
70.
Zurück zum Zitat A.O. Turky, M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3(LSM) nano powders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv 6, 17980–17986 (2016)CrossRef A.O. Turky, M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3(LSM) nano powders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv 6, 17980–17986 (2016)CrossRef
71.
Zurück zum Zitat P.S. Das, P.K. Chakraborty, B. Behera, R.N. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98–103 (2007)CrossRef P.S. Das, P.K. Chakraborty, B. Behera, R.N. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98–103 (2007)CrossRef
72.
Zurück zum Zitat M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4(3), 217–225 (2015)CrossRef M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4(3), 217–225 (2015)CrossRef
73.
Zurück zum Zitat A. Kumar, B.P. Singh, R.N.P. Choudhary et al., Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150–159 (2006)CrossRef A. Kumar, B.P. Singh, R.N.P. Choudhary et al., Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150–159 (2006)CrossRef
74.
Zurück zum Zitat B. Behera, P. Nayak, R.N.P. Choudhary, Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd. 436, 226–232 (2007)CrossRef B. Behera, P. Nayak, R.N.P. Choudhary, Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd. 436, 226–232 (2007)CrossRef
75.
Zurück zum Zitat J. Płcharski, W. Weiczorek, PEO based composite solid electrolyte containing nasicon. Solid State Ion. 28–30, 979–982 (1988)CrossRef J. Płcharski, W. Weiczorek, PEO based composite solid electrolyte containing nasicon. Solid State Ion. 28–30, 979–982 (1988)CrossRef
76.
Zurück zum Zitat A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998)CrossRef A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998)CrossRef
77.
Zurück zum Zitat M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Alloys Compd. 233(39), 129–135 (1996)CrossRef M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Alloys Compd. 233(39), 129–135 (1996)CrossRef
Metadaten
Titel
Effect of barium lanthanum manganite nano particle on the electric transport properties of polypyrrole at room temperature
verfasst von
M. G. Smitha
M. V. Murugendrappa
Publikationsdatum
07.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01421-x

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science: Materials in Electronics 11/2019 Zur Ausgabe

Neuer Inhalt