Skip to main content

2018 | OriginalPaper | Buchkapitel

Effect of Ca on the Microstructure and Mechanical Properties in Mg Alloys

verfasst von : E. I. Andritsos, G. C. G. Skinner, A. T. Paxton

Erschienen in: Magnesium Technology 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rare Earth (RE)-free Mg alloys suffer from low formability due to strong textures and highly anisotropic deformation modes. In the present study, we examine the effects of Ca addition on microstructure and mechanical properties of Mg–Li–Ca and Mg–Zn–Ca alloys. Based on experimental observations, Ca is reported as the element that should solid-solution strengthen Mg–Li alloys due to its significant size mismatch and weaken the texture in Mg–Zn alloys, similarly to the RE contribution in Mg alloys. Using the density functional theory (DFT) we examine the intrinsic type II stacking faults in the basal and pyramidal I planes. We try different alloy compositions in order to understand the solid-solution effect on the different stacking faults and reduce the high plastic anisotropy in Mg alloys mechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Lu, L. Lu, and S. Suresh. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324(5925):349–352, 2009. K. Lu, L. Lu, and S. Suresh. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324(5925):349–352, 2009.
2.
Zurück zum Zitat S. Ando et al. {1122} \( \left\langle {1123} \right\rangle \) slip in magnesium single crystal. Journal of Japan Institute of Light Metals, 42(12):765–771, 1992. S. Ando et al. {1122} \( \left\langle {1123} \right\rangle \) slip in magnesium single crystal. Journal of Japan Institute of Light Metals, 42(12):765–771, 1992.
3.
Zurück zum Zitat W.B. Hutchinson and M.R. Barnett. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 63(7):737–740, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology. W.B. Hutchinson and M.R. Barnett. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 63(7):737–740, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
4.
Zurück zum Zitat M.M. Avedesian, H. Baker, and A.S.M.I.H. Committee. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999. M.M. Avedesian, H. Baker, and A.S.M.I.H. Committee. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999.
5.
Zurück zum Zitat W.J. Kim, H.G. Jeong, and H.T. Jeong. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia, 61(11):1040–1043, 2009. W.J. Kim, H.G. Jeong, and H.T. Jeong. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Materialia, 61(11):1040–1043, 2009.
6.
Zurück zum Zitat O. Kulyasova et al. Microstructure and mechanical properties of ultrafinegrained Mg–Zn–Ca alloy. IOP Conference Series: Materials Science and Engineering, 63(1):012142, 2014. O. Kulyasova et al. Microstructure and mechanical properties of ultrafinegrained Mg–Zn–Ca alloy. IOP Conference Series: Materials Science and Engineering, 63(1):012142, 2014.
7.
Zurück zum Zitat I. J. Polmear. Magnesium alloys and applications. Materials Science and Technology, 10(1):1–16, Jan 1994. I. J. Polmear. Magnesium alloys and applications. Materials Science and Technology, 10(1):1–16, Jan 1994.
8.
Zurück zum Zitat L.L. Rokhlin. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Advances in Metallic Alloys. CRC Press, 2003. L.L. Rokhlin. Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Advances in Metallic Alloys. CRC Press, 2003.
9.
Zurück zum Zitat Y. Wang and J. C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics, 81(1):11–26, JUL 20 2003. Y. Wang and J. C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics, 81(1):11–26, JUL 20 2003.
10.
Zurück zum Zitat S.R. Agnew and J.F. Nie. Preface to the viewpoint set on: The current state of magnesium alloy science and technology. Scripta Materialia, 63(7):671–673, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology. S.R. Agnew and J.F. Nie. Preface to the viewpoint set on: The current state of magnesium alloy science and technology. Scripta Materialia, 63(7):671–673, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
11.
Zurück zum Zitat A. Chapuis and J. H. Driver. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5):1986–1994, Mar 2011. A. Chapuis and J. H. Driver. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Materialia, 59(5):1986–1994, Mar 2011.
12.
Zurück zum Zitat J. Hirsch and T. Al-Samman. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61(3):818–843, Feb 2013. J. Hirsch and T. Al-Samman. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Materialia, 61(3):818–843, Feb 2013.
13.
Zurück zum Zitat D. Griffiths. Explaining texture weakening and improved formability in magnesium rare earth alloys. Materials Science and Technology, 31(1):10–24, 2015. D. Griffiths. Explaining texture weakening and improved formability in magnesium rare earth alloys. Materials Science and Technology, 31(1):10–24, 2015.
14.
Zurück zum Zitat W. Qudong et al. Effects of ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 36(12):3035–3040, Jun 2001. W. Qudong et al. Effects of ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 36(12):3035–3040, Jun 2001.
15.
Zurück zum Zitat A.A. Luo. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 49(1):13–30, 2004. A.A. Luo. Recent magnesium alloy development for elevated temperature applications. International Materials Reviews, 49(1):13–30, 2004.
16.
Zurück zum Zitat K. Hirai et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering: A, 403(1):276–280, 2005. K. Hirai et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Materials Science and Engineering: A, 403(1):276–280, 2005.
17.
Zurück zum Zitat L. Han, H. Hu, and D. O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy. Materials Letters, 62(3):381–384, 2008. L. Han, H. Hu, and D. O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy. Materials Letters, 62(3):381–384, 2008.
18.
Zurück zum Zitat S.W. Xu et al. High temperature tensile properties of as-cast MgAlCa alloys. Materials Science and Engineering: A, 509(1):105–110, 2009. S.W. Xu et al. High temperature tensile properties of as-cast MgAlCa alloys. Materials Science and Engineering: A, 509(1):105–110, 2009.
19.
Zurück zum Zitat L. Geng et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Materials Letters, 63(5):557–559, 2009. L. Geng et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Materials Letters, 63(5):557–559, 2009.
20.
Zurück zum Zitat J. Jayaraj et al. Enhanced precipitation hardening of MgCa alloy by Al addition. Scripta Materialia, 63(8):831–834, 2010. J. Jayaraj et al. Enhanced precipitation hardening of MgCa alloy by Al addition. Scripta Materialia, 63(8):831–834, 2010.
21.
Zurück zum Zitat B.P. Zhang et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Materialia, 63(10):1024–1027, 2010. B.P. Zhang et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scripta Materialia, 63(10):1024–1027, 2010.
22.
Zurück zum Zitat Y. Chino et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Materials Transactions, 52(7):1477–1482, 2011. Y. Chino et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Materials Transactions, 52(7):1477–1482, 2011.
23.
Zurück zum Zitat D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metallurgica, 3(12):927–929, 1969. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals. Scripta Metallurgica, 3(12):927–929, 1969.
24.
Zurück zum Zitat Y. Wang et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Materialia, 62(9):646–649, 2010. Y. Wang et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scripta Materialia, 62(9):646–649, 2010.
25.
Zurück zum Zitat A Zunger et al. Special quasirandom structures. Phys. Rev. Lett., 65:353–356, Jul 1990. A Zunger et al. Special quasirandom structures. Phys. Rev. Lett., 65:353–356, Jul 1990.
26.
Zurück zum Zitat F. C. Frank. On Miller-Bravais indices and four-dimensional vectors. Acta Crystallographica, 18(5):862–866, May 1965. F. C. Frank. On Miller-Bravais indices and four-dimensional vectors. Acta Crystallographica, 18(5):862–866, May 1965.
27.
Zurück zum Zitat J. Harris. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31:1770–1779, Feb 1985. J. Harris. Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B, 31:1770–1779, Feb 1985.
28.
Zurück zum Zitat W. Matthew C. Foulkes and R. Haydock. Tight-binding models and density-functional theory. Phys. Rev. B, 39:12520–12536, Jun 1989. W. Matthew C. Foulkes and R. Haydock. Tight-binding models and density-functional theory. Phys. Rev. B, 39:12520–12536, Jun 1989.
29.
Zurück zum Zitat P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864-B871, Nov 1964.
30.
Zurück zum Zitat W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
31.
Zurück zum Zitat A J Read and R J Needs. Tests of the harris energy functional. Journal of Physics: Condensed Matter, 1(41):7565, 1989. A J Read and R J Needs. Tests of the harris energy functional. Journal of Physics: Condensed Matter, 1(41):7565, 1989.
32.
Zurück zum Zitat H. M. Polatoglou and M. Methfessel. Comparison of the harris and the Hohenberg-Kohn-Sham functionals for calculation of structural and vibrational properties of solids. Phys. Rev. B, 41:5898–5903, Mar 1990. H. M. Polatoglou and M. Methfessel. Comparison of the harris and the Hohenberg-Kohn-Sham functionals for calculation of structural and vibrational properties of solids. Phys. Rev. B, 41:5898–5903, Mar 1990.
33.
Zurück zum Zitat M. Schilfgaarde et al. Recent advances in non self-consistent total energy calculations in alloys. In MRS Proceedings, volume 186, 1990. M. Schilfgaarde et al. Recent advances in non self-consistent total energy calculations in alloys. In MRS Proceedings, volume 186, 1990.
34.
Zurück zum Zitat F. W. Averill and G. S. Painter. Harris functional and related methods for calculating total energies in density-functional theory. Phys. Rev. B, 41:10344–10353, May 1990. F. W. Averill and G. S. Painter. Harris functional and related methods for calculating total energies in density-functional theory. Phys. Rev. B, 41:10344–10353, May 1990.
35.
Zurück zum Zitat N. Chetty, K. W. Jacobsen, and J. K. Norskov. Optimized and transferable densities from first-principles local density calculations. Journal of Physics: Condensed Matter, 3(28):5437, 1991. N. Chetty, K. W. Jacobsen, and J. K. Norskov. Optimized and transferable densities from first-principles local density calculations. Journal of Physics: Condensed Matter, 3(28):5437, 1991.
36.
Zurück zum Zitat B. Farid et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys. Rev. B, 48:11602–11621, Oct 1993. B. Farid et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas. Phys. Rev. B, 48:11602–11621, Oct 1993.
37.
Zurück zum Zitat G. D. Bellchambers and F. R. Manby. An approximate density-functional method using the Harris-Foulkes functional. The Journal of Chemical Physics, 135(8):084105, 2011. G. D. Bellchambers and F. R. Manby. An approximate density-functional method using the Harris-Foulkes functional. The Journal of Chemical Physics, 135(8):084105, 2011.
38.
Zurück zum Zitat J. Hartford, L. B. Hansen, and B. I. Lundqvist. Harris functional densities: from solid to atom. Journal of Physics: Condensed Matter, 8(40):7379, 1996. J. Hartford, L. B. Hansen, and B. I. Lundqvist. Harris functional densities: from solid to atom. Journal of Physics: Condensed Matter, 8(40):7379, 1996.
39.
Zurück zum Zitat M. Mezbahul-Islam, A. Mostafa, and M. Medraj. Essential magnesium alloys binary phase diagrams. Journal of Materials, April 2014. M. Mezbahul-Islam, A. Mostafa, and M. Medraj. Essential magnesium alloys binary phase diagrams. Journal of Materials, April 2014.
40.
Zurück zum Zitat A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton. The Li–Mg (lithium-magnesium) system. Bulletin of Alloy Phase Diagrams, 5(4):365–374, Aug 1984. A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton. The Li–Mg (lithium-magnesium) system. Bulletin of Alloy Phase Diagrams, 5(4):365–374, Aug 1984.
41.
Zurück zum Zitat A. A. Nayeb-Hashemi and J. B. Clark. The CaMg (calcium–magnesium) system. Bulletin of Alloy Phase Diagrams, 8(1):58–65, Feb 1987. A. A. Nayeb-Hashemi and J. B. Clark. The CaMg (calcium–magnesium) system. Bulletin of Alloy Phase Diagrams, 8(1):58–65, Feb 1987.
42.
Zurück zum Zitat N. Chetty and M. Weinert. Stacking faults in magnesium. Phys. Rev. B, 56:10844–10851, Nov 1997. N. Chetty and M. Weinert. Stacking faults in magnesium. Phys. Rev. B, 56:10844–10851, Nov 1997.
43.
Zurück zum Zitat A. E. Smith. Surface, interface and stacking fault energies of magnesium from first principles calculations. Surface Science, 601:5762–5765, 2007. A. E. Smith. Surface, interface and stacking fault energies of magnesium from first principles calculations. Surface Science, 601:5762–5765, 2007.
44.
Zurück zum Zitat A. Datta, U.V. Waghmare, and U. Ramamurty. Structure and stacking faults in layered MgZnY alloys: A first-principles study. Acta Materialia, 56(11):2531–2539, 2008. A. Datta, U.V. Waghmare, and U. Ramamurty. Structure and stacking faults in layered MgZnY alloys: A first-principles study. Acta Materialia, 56(11):2531–2539, 2008.
45.
Zurück zum Zitat J. A. Yasi et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 17(5):055012, 2009. J. A. Yasi et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Modelling and Simulation in Materials Science and Engineering, 17(5):055012, 2009.
46.
Zurück zum Zitat Q. Zhang et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution. Physica B: Condensed Matter, 416:39–44, 2013. Q. Zhang et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution. Physica B: Condensed Matter, 416:39–44, 2013.
47.
Zurück zum Zitat Z. Pei et al. From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium. Phys. Rev. B, 92:064107, Aug 2015. Z. Pei et al. From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium. Phys. Rev. B, 92:064107, Aug 2015.
48.
Zurück zum Zitat T. Nogaret et al. Atomistic study of edge and screw \( \left\langle {c + a} \right\rangle \) dislocations in magnesium. Acta Materialia, 58(13):4332–4343, 2010. T. Nogaret et al. Atomistic study of edge and screw \( \left\langle {c + a} \right\rangle \) dislocations in magnesium. Acta Materialia, 58(13):4332–4343, 2010.
49.
Zurück zum Zitat J. A. Yasi, L. G. Hector, and D. R. Trinkle. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Materialia, 58(17):5704–5713, 2010. J. A. Yasi, L. G. Hector, and D. R. Trinkle. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties. Acta Materialia, 58(17):5704–5713, 2010.
50.
Zurück zum Zitat M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scripta Materialia, 66(5):219–222, 2012. M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scripta Materialia, 66(5):219–222, 2012.
51.
Zurück zum Zitat S. L. Shang et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, 67:168–180, 2014. S. L. Shang et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, 67:168–180, 2014.
52.
Zurück zum Zitat M. Yuasa et al. Improved plastic anisotropy of MgZnCa alloys exhibiting high-stretch formability: A first-principles study. Acta Materialia, 65:207–214, 2014. M. Yuasa et al. Improved plastic anisotropy of MgZnCa alloys exhibiting high-stretch formability: A first-principles study. Acta Materialia, 65:207–214, 2014.
53.
Zurück zum Zitat J. D. Robson. Effect of Rare-Earth additions on the texture of wrought magnesium alloys: The role of grain boundary segregation. Metallurgical and Materials Transactions A, 45(8):3205–3212, Jul 2014. J. D. Robson. Effect of Rare-Earth additions on the texture of wrought magnesium alloys: The role of grain boundary segregation. Metallurgical and Materials Transactions A, 45(8):3205–3212, Jul 2014.
54.
Zurück zum Zitat J. Han et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia, 64(8):693–696, 2011. J. Han et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia, 64(8):693–696, 2011.
55.
Zurück zum Zitat Z. Wu and W. A. Curtin. The origins of high hardening and low ductility in magnesium. Nature, 526(7571):6267, October 2015. Z. Wu and W. A. Curtin. The origins of high hardening and low ductility in magnesium. Nature, 526(7571):6267, October 2015.
Metadaten
Titel
Effect of Ca on the Microstructure and Mechanical Properties in Mg Alloys
verfasst von
E. I. Andritsos
G. C. G. Skinner
A. T. Paxton
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72332-7_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.