1.
K. Lu, L. Lu, and S. Suresh. Strengthening materials by engineering coherent internal boundaries at the nanoscale.
Science, 324(5925):349–352, 2009.
2.
S. Ando et al. {1122}
\( \left\langle {1123} \right\rangle \) slip in magnesium single crystal.
Journal of Japan Institute of Light Metals, 42(12):765–771, 1992.
3.
W.B. Hutchinson and M.R. Barnett. Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals.
Scripta Materialia, 63(7):737–740, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
4.
M.M. Avedesian, H. Baker, and A.S.M.I.H. Committee.
ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999.
5.
W.J. Kim, H.G. Jeong, and H.T. Jeong. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging.
Scripta Materialia, 61(11):1040–1043, 2009.
6.
O. Kulyasova et al. Microstructure and mechanical properties of ultrafinegrained Mg–Zn–Ca alloy.
IOP Conference Series: Materials Science and Engineering, 63(1):012142, 2014.
7.
I. J. Polmear. Magnesium alloys and applications.
Materials Science and Technology, 10(1):1–16, Jan 1994.
8.
L.L. Rokhlin.
Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Advances in Metallic Alloys. CRC Press, 2003.
9.
Y. Wang and J. C. Huang. Texture analysis in hexagonal materials.
Materials Chemistry and Physics, 81(1):11–26, JUL 20 2003.
10.
S.R. Agnew and J.F. Nie. Preface to the viewpoint set on: The current state of magnesium alloy science and technology.
Scripta Materialia, 63(7):671–673, 2010. Viewpoint set no. 47 Magnesium Alloy Science and Technology.
11.
A. Chapuis and J. H. Driver. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals.
Acta Materialia, 59(5):1986–1994, Mar 2011.
12.
J. Hirsch and T. Al-Samman. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications.
Acta Materialia, 61(3):818–843, Feb 2013.
13.
D. Griffiths. Explaining texture weakening and improved formability in magnesium rare earth alloys.
Materials Science and Technology, 31(1):10–24, 2015.
14.
W. Qudong et al. Effects of ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy.
Journal of Materials Science, 36(12):3035–3040, Jun 2001.
15.
A.A. Luo. Recent magnesium alloy development for elevated temperature applications.
International Materials Reviews, 49(1):13–30, 2004.
16.
K. Hirai et al. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature.
Materials Science and Engineering: A, 403(1):276–280, 2005.
17.
L. Han, H. Hu, and D. O. Northwood. Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy.
Materials Letters, 62(3):381–384, 2008.
18.
S.W. Xu et al. High temperature tensile properties of as-cast MgAlCa alloys.
Materials Science and Engineering: A, 509(1):105–110, 2009.
19.
L. Geng et al. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy.
Materials Letters, 63(5):557–559, 2009.
20.
J. Jayaraj et al. Enhanced precipitation hardening of MgCa alloy by Al addition.
Scripta Materialia, 63(8):831–834, 2010.
21.
B.P. Zhang et al. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures.
Scripta Materialia, 63(10):1024–1027, 2010.
22.
Y. Chino et al. Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys.
Materials Transactions, 52(7):1477–1482, 2011.
23.
D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu. On the stacking fault energies of some close-packed hexagonal metals.
Scripta Metallurgica, 3(12):927–929, 1969.
24.
Y. Wang et al. First-principles calculations of twin-boundary and stacking-fault energies in magnesium.
Scripta Materialia, 62(9):646–649, 2010.
25.
A Zunger et al. Special quasirandom structures.
Phys. Rev. Lett., 65:353–356, Jul 1990.
26.
F. C. Frank. On Miller-Bravais indices and four-dimensional vectors.
Acta Crystallographica, 18(5):862–866, May 1965.
27.
J. Harris. Simplified method for calculating the energy of weakly interacting fragments.
Phys. Rev. B, 31:1770–1779, Feb 1985.
28.
W. Matthew C. Foulkes and R. Haydock. Tight-binding models and density-functional theory.
Phys. Rev. B, 39:12520–12536, Jun 1989.
29.
P. Hohenberg and W. Kohn. Inhomogeneous electron gas.
Phys. Rev., 136:B864-B871, Nov 1964.
30.
W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects.
Phys. Rev., 140:A1133–A1138, Nov 1965.
31.
A J Read and R J Needs. Tests of the harris energy functional.
Journal of Physics: Condensed Matter, 1(41):7565, 1989.
32.
H. M. Polatoglou and M. Methfessel. Comparison of the harris and the Hohenberg-Kohn-Sham functionals for calculation of structural and vibrational properties of solids.
Phys. Rev. B, 41:5898–5903, Mar 1990.
33.
M. Schilfgaarde et al. Recent advances in non self-consistent total energy calculations in alloys. In
MRS Proceedings, volume 186, 1990.
34.
F. W. Averill and G. S. Painter. Harris functional and related methods for calculating total energies in density-functional theory.
Phys. Rev. B, 41:10344–10353, May 1990.
35.
N. Chetty, K. W. Jacobsen, and J. K. Norskov. Optimized and transferable densities from first-principles local density calculations.
Journal of Physics: Condensed Matter, 3(28):5437, 1991.
36.
B. Farid et al. Extremal properties of the Harris-Foulkes functional and an improved screening calculation for the electron gas.
Phys. Rev. B, 48:11602–11621, Oct 1993.
37.
G. D. Bellchambers and F. R. Manby. An approximate density-functional method using the Harris-Foulkes functional.
The Journal of Chemical Physics, 135(8):084105, 2011.
38.
J. Hartford, L. B. Hansen, and B. I. Lundqvist. Harris functional densities: from solid to atom.
Journal of Physics: Condensed Matter, 8(40):7379, 1996.
39.
M. Mezbahul-Islam, A. Mostafa, and M. Medraj. Essential magnesium alloys binary phase diagrams.
Journal of Materials, April 2014.
40.
A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton. The Li–Mg (lithium-magnesium) system.
Bulletin of Alloy Phase Diagrams, 5(4):365–374, Aug 1984.
41.
A. A. Nayeb-Hashemi and J. B. Clark. The CaMg (calcium–magnesium) system.
Bulletin of Alloy Phase Diagrams, 8(1):58–65, Feb 1987.
42.
N. Chetty and M. Weinert. Stacking faults in magnesium.
Phys. Rev. B, 56:10844–10851, Nov 1997.
43.
A. E. Smith. Surface, interface and stacking fault energies of magnesium from first principles calculations.
Surface Science, 601:5762–5765, 2007.
44.
A. Datta, U.V. Waghmare, and U. Ramamurty. Structure and stacking faults in layered MgZnY alloys: A first-principles study.
Acta Materialia, 56(11):2531–2539, 2008.
45.
J. A. Yasi et al. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions.
Modelling and Simulation in Materials Science and Engineering, 17(5):055012, 2009.
46.
Q. Zhang et al. Ab initio study of the effect of solute atoms Zn and Y on stacking faults in Mg solid solution.
Physica B: Condensed Matter, 416:39–44, 2013.
47.
Z. Pei et al. From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium.
Phys. Rev. B, 92:064107, Aug 2015.
48.
T. Nogaret et al. Atomistic study of edge and screw
\( \left\langle {c + a} \right\rangle \) dislocations in magnesium.
Acta Materialia, 58(13):4332–4343, 2010.
49.
J. A. Yasi, L. G. Hector, and D. R. Trinkle. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties.
Acta Materialia, 58(17):5704–5713, 2010.
50.
M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations.
Scripta Materialia, 66(5):219–222, 2012.
51.
S. L. Shang et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation.
Acta Materialia, 67:168–180, 2014.
52.
M. Yuasa et al. Improved plastic anisotropy of MgZnCa alloys exhibiting high-stretch formability: A first-principles study.
Acta Materialia, 65:207–214, 2014.
53.
J. D. Robson. Effect of Rare-Earth additions on the texture of wrought magnesium alloys: The role of grain boundary segregation.
Metallurgical and Materials Transactions A, 45(8):3205–3212, Jul 2014.
54.
J. Han et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects.
Scripta Materialia, 64(8):693–696, 2011.
55.
Z. Wu and W. A. Curtin. The origins of high hardening and low ductility in magnesium.
Nature, 526(7571):6267, October 2015.