Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2022

01.01.2022 | STRENGTH AND PLASTICITY

Effect of Crystallization Conditions on the Microstructure, Crystal Structure, and Mechanical Properties of a Fe–Mn–C Alloy in Microvolumes

verfasst von: O. A. Chikova, N. I. Sinitsin, D. S. Chezganov

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of the comparative study of the microstructure, crystal structure, and mechanical properties in microvolumes of the Fe–25 wt % Mn–2 wt % С alloy crystallized from melt in different structural states—homogeneous and heterogeneous—were presented. The study was performed by means of scanning electron microscopy Energy Dispersive X-Ray Spectroscopy (EDX), electron backscatter diffraction (EBSD), and nanoindentation. The destruction of microheterogeneity in the Fe–Mn–C melts was established to lead to an increase in the dendrite parameter, the size of crystallites, and the fraction of low-angle boundaries under cooling and further crystallization. The surface of austenite dendrites was revealed to contain manganese-rich liquation layers, which had a thickness 〈L〉 = 60 µm and a manganese content of 35–40% and led to deformation nonuniformity of an ingot. The adhesion strength of the liquation layer to the body of an austenite dendrite was estimated as Kint = 9.6–13.1 MPa m0.5 and could not be a reason for the destruction of an ingot.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Popova, T. Dement, E. Nikonenko, I. Kurzina, and E. Kozlov, “Structure and phase composition of manganese steels modified by alloying elements,” AIP Conf. Proc. 1800, No. 1, 030001 (2017).CrossRef N. Popova, T. Dement, E. Nikonenko, I. Kurzina, and E. Kozlov, “Structure and phase composition of manganese steels modified by alloying elements,” AIP Conf. Proc. 1800, No. 1, 030001 (2017).CrossRef
2.
Zurück zum Zitat O. Grässel and G. Frommeyer, “Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels,” Mater. Sci. Technol. 14, No. 12, 1213–1217 (2018).CrossRef O. Grässel and G. Frommeyer, “Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels,” Mater. Sci. Technol. 14, No. 12, 1213–1217 (2018).CrossRef
3.
Zurück zum Zitat G. Frommeyer and O. Grässel, “High strength TRIP/TWIP and superplastic steels: development, properties, application: 10,” Rev. Met. Paris 95, No. 10, 1299–1310 (1998).CrossRef G. Frommeyer and O. Grässel, “High strength TRIP/TWIP and superplastic steels: development, properties, application: 10,” Rev. Met. Paris 95, No. 10, 1299–1310 (1998).CrossRef
4.
Zurück zum Zitat G. Frommeyer, U. Brüx, and P. Neumann, “Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes,” ISIJ Int. 43, No. 3, 438–446 (2003).CrossRef G. Frommeyer, U. Brüx, and P. Neumann, “Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes,” ISIJ Int. 43, No. 3, 438–446 (2003).CrossRef
5.
Zurück zum Zitat P. S. Popel’, “Metastable microheterogeneity of melts in systems with eutectic and monotectics and its effect on the structure of the alloy after solidification,” Rasplavy, No. 1, 22–48 (2005). P. S. Popel’, “Metastable microheterogeneity of melts in systems with eutectic and monotectics and its effect on the structure of the alloy after solidification,” Rasplavy, No. 1, 22–48 (2005).
6.
Zurück zum Zitat M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, M. Besser, J. R. Morris, and U. Dahlborg, “Superheat-dependent microstructure of molten Al–Si alloys of different compositions studied by small angle neutron scattering,” J. Alloys Compd. 550, 9–22 (2013).CrossRef M. Calvo-Dahlborg, P. S. Popel, M. J. Kramer, M. Besser, J. R. Morris, and U. Dahlborg, “Superheat-dependent microstructure of molten Al–Si alloys of different compositions studied by small angle neutron scattering,” J. Alloys Compd. 550, 9–22 (2013).CrossRef
7.
Zurück zum Zitat Y.-X. He, J.-S. Li, J. Wang, and E. Beaugnon, “Liquid−liquid structure transition in metallic melt and its impact on solidification: A review,” Trans. Nonferrous Met. Soc. China 30, 2293−2310 (2020).CrossRef Y.-X. He, J.-S. Li, J. Wang, and E. Beaugnon, “Liquid−liquid structure transition in metallic melt and its impact on solidification: A review,” Trans. Nonferrous Met. Soc. China 30, 2293−2310 (2020).CrossRef
8.
Zurück zum Zitat R. Kurita and H. Tanaka, “Drastic enhancement of crystal nucleation in a molecular liquid by its liquid–liquid transition,” App. Phys. Sci. 116, No. 50, 24949–24955 (2020). R. Kurita and H. Tanaka, “Drastic enhancement of crystal nucleation in a molecular liquid by its liquid–liquid transition,” App. Phys. Sci. 116, No. 50, 24949–24955 (2020).
9.
Zurück zum Zitat I. G. Farbenindustrie, U.S. Patent No. GB359425 (1931). I. G. Farbenindustrie, U.S. Patent No. GB359425 (1931).
10.
Zurück zum Zitat N. N. Stepanova, D. P. Rodionov, Yu. E. Turkhan, V. A. Sazonova, and E. N. Khlystov, “Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt,” Phys. Met. Metallogr. 95, No. 6, 602–609 (2003). N. N. Stepanova, D. P. Rodionov, Yu. E. Turkhan, V. A. Sazonova, and E. N. Khlystov, “Phase stability of nickel-base superalloys solidified after a high-temperature treatment of the melt,” Phys. Met. Metallogr. 95, No. 6, 602–609 (2003).
11.
Zurück zum Zitat M. Yang, J. Pan, X. Liu, M. Dong, S. Xu, and Y. Dong, “Effects of melt overheating on undercooling degree, glass forming ability and crystallization behavior of Nd9Fe70Ti4C2B15 permanent magnetic alloy,” J. Chin. Rare Earth Soc. 34, No. 3, 273–281 (2016). M. Yang, J. Pan, X. Liu, M. Dong, S. Xu, and Y. Dong, “Effects of melt overheating on undercooling degree, glass forming ability and crystallization behavior of Nd9Fe70Ti4C2B15 permanent magnetic alloy,” J. Chin. Rare Earth Soc. 34, No. 3, 273–281 (2016).
12.
Zurück zum Zitat F. S. Yin, X. F. Sun, J. G. Li, H. R. Guan, and Z. Q. Hu, “Effects of melt treatment on the cast structure of M963 superalloy,” Scr. Mater. 48, No. 4, 425–429 (2003).CrossRef F. S. Yin, X. F. Sun, J. G. Li, H. R. Guan, and Z. Q. Hu, “Effects of melt treatment on the cast structure of M963 superalloy,” Scr. Mater. 48, No. 4, 425–429 (2003).CrossRef
13.
Zurück zum Zitat R. J. Mostert and G. T. Van Rooyen, “Quantitative assessment of the harden ability increase resulting from a super harden ability treatment,” Metall. Trans. A 15, No. 12, 2185–2191 (1984).CrossRef R. J. Mostert and G. T. Van Rooyen, “Quantitative assessment of the harden ability increase resulting from a super harden ability treatment,” Metall. Trans. A 15, No. 12, 2185–2191 (1984).CrossRef
14.
Zurück zum Zitat C. Wang, J. Zhang, L. Liu, and H. Fu, “Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy,” J. Mater. Sci. Technol. 27, No. 7, 668–672 (2011).CrossRef C. Wang, J. Zhang, L. Liu, and H. Fu, “Effect of melt superheating treatment on directional solidification interface morphology of multi-component alloy,” J. Mater. Sci. Technol. 27, No. 7, 668–672 (2011).CrossRef
15.
Zurück zum Zitat L. Wang, L. Bo, M. Zuo, and D. Zhao, “Effect of melt superheating treatment on solidification behavior of uniform Al10Bi54Sn36 monotectic alloy,” J. Mol. Liq. 272, 885–891 (2018).CrossRef L. Wang, L. Bo, M. Zuo, and D. Zhao, “Effect of melt superheating treatment on solidification behavior of uniform Al10Bi54Sn36 monotectic alloy,” J. Mol. Liq. 272, 885–891 (2018).CrossRef
16.
Zurück zum Zitat P. Jia, Z. Gao, X. Hu, Y. Liu, J. Zhang, Z. Yang, X. Teng, D. Zhao, Y. Wang, S. Zhang, and D. Geng, “Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microtructures of Al–Bi–Sn ribbons,” Mater. Res. Express 6, No. 6, 066539 (2019).CrossRef P. Jia, Z. Gao, X. Hu, Y. Liu, J. Zhang, Z. Yang, X. Teng, D. Zhao, Y. Wang, S. Zhang, and D. Geng, “Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microtructures of Al–Bi–Sn ribbons,” Mater. Res. Express 6, No. 6, 066539 (2019).CrossRef
17.
Zurück zum Zitat H. Su, H. Wang, J. Zhang, M. Guo, L. Liu, and H. Fu, “Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy,” Metall. Mater. Trans. B 49, No. 4, 1537–1546 (2018).CrossRef H. Su, H. Wang, J. Zhang, M. Guo, L. Liu, and H. Fu, “Influence of melt superheating treatment on solidification characteristics and rupture life of a third-generation Ni-based single-crystal superalloy,” Metall. Mater. Trans. B 49, No. 4, 1537–1546 (2018).CrossRef
22.
Zurück zum Zitat N. I. Sinitsin, O. A. Chikova, and D. Chezganov, “Effect of destruction of microheterogeneity on microstructure and crystal structure of 110G13l steel ingots (Hadfield steel),” Chern. Met., No. 1, 36–42 (2020). N. I. Sinitsin, O. A. Chikova, and D. Chezganov, “Effect of destruction of microheterogeneity on microstructure and crystal structure of 110G13l steel ingots (Hadfield steel),” Chern. Met., No. 1, 36–42 (2020).
23.
Zurück zum Zitat W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, No. 1, 3–20 (2004).CrossRef W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, No. 1, 3–20 (2004).CrossRef
24.
Zurück zum Zitat C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced processand microstructure evolution,” Solid State Phenom. 176, 29–34 (2011).CrossRef C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced processand microstructure evolution,” Solid State Phenom. 176, 29–34 (2011).CrossRef
25.
Zurück zum Zitat C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance,” Acta Mater. 72,239–251 (2014).CrossRef C. Zhang, H. Zhou, and L. Liu, “Laminar Fe-based amorphous composite coatings with enhanced bonding strength and impact resistance,” Acta Mater. 72,239–251 (2014).CrossRef
26.
Zurück zum Zitat T. Watanabe, “An approach to grain boundary design for strong and ductile polycrystals,” Res. Mech. 11, No. 1, 47–84 (1984). T. Watanabe, “An approach to grain boundary design for strong and ductile polycrystals,” Res. Mech. 11, No. 1, 47–84 (1984).
27.
Zurück zum Zitat T. Watanabe, “Grain boundary design and control for high temperature materials,” Mater. Sci. Eng., A 166, No. 1–2, 11–28 (1993).CrossRef T. Watanabe, “Grain boundary design and control for high temperature materials,” Mater. Sci. Eng., A 166, No. 1–2, 11–28 (1993).CrossRef
28.
Zurück zum Zitat P. Lin, G. Palumbo, U. Erb, and K. T. Aust, “Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600,” Scr. Metall. Mater. 33, No. 9, 1387–1392 (1995).CrossRef P. Lin, G. Palumbo, U. Erb, and K. T. Aust, “Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600,” Scr. Metall. Mater. 33, No. 9, 1387–1392 (1995).CrossRef
29.
Zurück zum Zitat G. Palumbo, P. J. King, K. T. Aust, U. Erb, and P. C. Lichtenberger, “Grain boundary design and control for intergranular stress-corrosion resistance,” Scr. Metall. Mater. 25, No. 8, 1775–1780 (1991).CrossRef G. Palumbo, P. J. King, K. T. Aust, U. Erb, and P. C. Lichtenberger, “Grain boundary design and control for intergranular stress-corrosion resistance,” Scr. Metall. Mater. 25, No. 8, 1775–1780 (1991).CrossRef
30.
Zurück zum Zitat B. W. Bennett and H. W. Pickering, “Effect of grain boundary structure on sensitization and corrosion of stainless steel,” Metall. Trans. A 18, No. 6, 1117–1124 (1991).CrossRef B. W. Bennett and H. W. Pickering, “Effect of grain boundary structure on sensitization and corrosion of stainless steel,” Metall. Trans. A 18, No. 6, 1117–1124 (1991).CrossRef
Metadaten
Titel
Effect of Crystallization Conditions on the Microstructure, Crystal Structure, and Mechanical Properties of a Fe–Mn–C Alloy in Microvolumes
verfasst von
O. A. Chikova
N. I. Sinitsin
D. S. Chezganov
Publikationsdatum
01.01.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010021

Weitere Artikel der Ausgabe 1/2022

Physics of Metals and Metallography 1/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Properties of a SHS Cu–Ti–C–B Composite