Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2022

01.01.2022 | STRENGTH AND PLASTICITY

Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes

verfasst von: A. G. Sheinerman

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of recent experiments and computer simulations and theoretical modeling of the mechanical properties of metal matrix composites with graphene and carbon nanotubes are reviewed. The mechanisms involved in strengthening of such composites and the results of simulation of their plastic deformation and strength properties are considered. The effects of the size of inclusions and interface characteristics on the strength and plasticity of such composites are analyzed. Various processes of plastic deformation and fracture of metal matrix composites with graphene and carbon nanotubes and the effects of these processes on the mechanical properties of composites of these kinds are discussed. The influence of the nonuniform grain size distribution of the metal matrix on the strength and plasticity of metal matrix composites with graphene and carbon nanotubes is considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. I. Ahmad, H. Hamoudi, A. Abdala, Z. K. Ghouri, and K. M. Youssef, “Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties,” Rev. Adv. Mater. Sci. 59, 67–114 (2020).CrossRef S. I. Ahmad, H. Hamoudi, A. Abdala, Z. K. Ghouri, and K. M. Youssef, “Graphene-reinforced bulk metal matrix composites: synthesis, microstructure, and properties,” Rev. Adv. Mater. Sci. 59, 67–114 (2020).CrossRef
2.
Zurück zum Zitat A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, “Graphene reinforced metal and ceramic matrix composites: a review,” Int. Mater. Rev. 62, 241–302 (2016).CrossRef A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, “Graphene reinforced metal and ceramic matrix composites: a review,” Int. Mater. Rev. 62, 241–302 (2016).CrossRef
3.
Zurück zum Zitat Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites – a review,” Mater. Sci. Technol. 32, 930–953 (2016).CrossRef Z. Hu, G. Tong, D. Lin, C. Chen, H. Guo, J. Xu, and L. Zhou, “Graphene-reinforced metal matrix nanocomposites – a review,” Mater. Sci. Technol. 32, 930–953 (2016).CrossRef
4.
Zurück zum Zitat P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, “Copper/graphene composites: a review,” J. Mater. Sci. 54, 12236–12289 (2019).CrossRef P. Hidalgo-Manrique, X. Lei, R. Xu, M. Zhou, I. A. Kinloch, and R. J. Young, “Copper/graphene composites: a review,” J. Mater. Sci. 54, 12236–12289 (2019).CrossRef
5.
Zurück zum Zitat Ö. Güler and N. Bağcı, “A short review on mechanical properties of graphene reinforced metal matrix composites,” J. Mater. Res. Technol. 9, 6808–6833 (2020).CrossRef Ö. Güler and N. Bağcı, “A short review on mechanical properties of graphene reinforced metal matrix composites,” J. Mater. Res. Technol. 9, 6808–6833 (2020).CrossRef
6.
Zurück zum Zitat N. Seyed Pourmand and H. Asgharzadeh, “Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties,” Crit. Rev. Solid State Mater. Sci. 45, 289–337 (2019).CrossRef N. Seyed Pourmand and H. Asgharzadeh, “Aluminum matrix composites reinforced with graphene: a review on production, microstructure, and properties,” Crit. Rev. Solid State Mater. Sci. 45, 289–337 (2019).CrossRef
7.
Zurück zum Zitat A. Saboori, M. Dadkhah, P. Fino, and M. Pavese, “An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties,” Metals 8, 423 (2018).CrossRef A. Saboori, M. Dadkhah, P. Fino, and M. Pavese, “An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties,” Metals 8, 423 (2018).CrossRef
8.
Zurück zum Zitat I. A. Ovid’ko, “Metal-graphene nanocomposites with enhanced mechanical properties: a review,” Rev. Adv. Mater. Sci. 38, 190–200 (2014). I. A. Ovid’ko, “Metal-graphene nanocomposites with enhanced mechanical properties: a review,” Rev. Adv. Mater. Sci. 38, 190–200 (2014).
9.
Zurück zum Zitat X. Zhang, N. Zhao, and C. He, “The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review,” Prog. Mater. Sci. 113, 100672 (2020).CrossRef X. Zhang, N. Zhao, and C. He, “The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design—A review,” Prog. Mater. Sci. 113, 100672 (2020).CrossRef
10.
Zurück zum Zitat M. Yang, Y. Liu, T. Fan, and D. Zhang, “Metal-graphene interfaces in epitaxial and bulk systems: A review,” Prog. Mater. Sci. 110, 100652 (2020).CrossRef M. Yang, Y. Liu, T. Fan, and D. Zhang, “Metal-graphene interfaces in epitaxial and bulk systems: A review,” Prog. Mater. Sci. 110, 100652 (2020).CrossRef
11.
Zurück zum Zitat S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., R 74, 281–350 (2013). S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng., R 74, 281–350 (2013).
12.
Zurück zum Zitat M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, and P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites,” Composites, Part B 183, 107664 (2020).CrossRef M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, and P. Rohatgi, “Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites,” Composites, Part B 183, 107664 (2020).CrossRef
13.
Zurück zum Zitat Z. Y. Zhao, P. K. Bai, W. B. Du, B. Liu, D. Pan, R. Das, C. T. Liu, and Z. H. Guo, “An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications,” Carbon 170, 302–326 (2020).CrossRef Z. Y. Zhao, P. K. Bai, W. B. Du, B. Liu, D. Pan, R. Das, C. T. Liu, and Z. H. Guo, “An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications,” Carbon 170, 302–326 (2020).CrossRef
14.
Zurück zum Zitat V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Mater. Res. Bull. 138, 111224 (2021).CrossRef V. Khanna, V. Kumar, and S. A. Bansal, “Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective,” Mater. Res. Bull. 138, 111224 (2021).CrossRef
15.
Zurück zum Zitat S. M. A. K. Mohammed and D. L. Chen, “Carbon nanotube-reinforced aluminum matrix composites,” Adv. Eng. Mater. 22, 1901176 (2019).CrossRef S. M. A. K. Mohammed and D. L. Chen, “Carbon nanotube-reinforced aluminum matrix composites,” Adv. Eng. Mater. 22, 1901176 (2019).CrossRef
16.
Zurück zum Zitat R. Islam Rubel, M. Hasan Ali, M. Abu Jafor, and M. Mahmodul Alam, “Carbon nanotubes agglomeration in reinforced composites: A review,” AIMS Mater. Sci. 6, 756–780 (2019).CrossRef R. Islam Rubel, M. Hasan Ali, M. Abu Jafor, and M. Mahmodul Alam, “Carbon nanotubes agglomeration in reinforced composites: A review,” AIMS Mater. Sci. 6, 756–780 (2019).CrossRef
17.
Zurück zum Zitat M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S. R. Bakshi, “Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review,” Carbon 160, 14–44 (2020).CrossRef M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, and S. R. Bakshi, “Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review,” Carbon 160, 14–44 (2020).CrossRef
18.
Zurück zum Zitat K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy–A review,” Crit. Rev. Sol. State Mater. Sci. 40, 38–55 (2014).CrossRef K. S. Munir, P. Kingshott, and C. Wen, “Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy–A review,” Crit. Rev. Sol. State Mater. Sci. 40, 38–55 (2014).CrossRef
19.
Zurück zum Zitat S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites—a review,” Int. Mater. Rev. 55, 41–64 (2013).CrossRef S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites—a review,” Int. Mater. Rev. 55, 41–64 (2013).CrossRef
20.
Zurück zum Zitat P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev. 49, 31–43 (2013).CrossRef P. J. F. Harris, “Carbon nanotube composites,” Int. Mater. Rev. 49, 31–43 (2013).CrossRef
21.
Zurück zum Zitat S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, A. F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, and F. Berto, “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials 13, 4421 (2020).CrossRef S. Abazari, A. Shamsipur, H. R. Bakhsheshi-Rad, A. F. Ismail, S. Sharif, M. Razzaghi, S. Ramakrishna, and F. Berto, “Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review,” Materials 13, 4421 (2020).CrossRef
22.
Zurück zum Zitat R. M. Sundaram, I. A. Sekiguch, M. Sekiya, T. Yamada, and K. Hata, “Copper/carbon nanotube composites: research trends and outlook,” R. Soc. Open Sci. 5, 180814 (2018).CrossRef R. M. Sundaram, I. A. Sekiguch, M. Sekiya, T. Yamada, and K. Hata, “Copper/carbon nanotube composites: research trends and outlook,” R. Soc. Open Sci. 5, 180814 (2018).CrossRef
23.
Zurück zum Zitat H. Hashim, M. S. Salleh, and M. Z. Omar, “Homogenous dispersion and interfacial bonding of carbon nanotube reinforced with aluminum matrix composite: A review,” Rev. Adv. Mater. Sci. 58, 295–303 (2019).CrossRef H. Hashim, M. S. Salleh, and M. Z. Omar, “Homogenous dispersion and interfacial bonding of carbon nanotube reinforced with aluminum matrix composite: A review,” Rev. Adv. Mater. Sci. 58, 295–303 (2019).CrossRef
24.
Zurück zum Zitat I. G. Shirinkina, I. G. Brodova, D. Y. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The Effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, 1193–1202 (2020).CrossRef I. G. Shirinkina, I. G. Brodova, D. Y. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The Effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, 1193–1202 (2020).CrossRef
25.
Zurück zum Zitat I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science 362, 547–553 (2018).CrossRef I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science 362, 547–553 (2018).CrossRef
26.
Zurück zum Zitat M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects,” Surf. Sci. Rep. 67, 83–115 (2012).CrossRef M. Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects,” Surf. Sci. Rep. 67, 83–115 (2012).CrossRef
27.
Zurück zum Zitat D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci. 90, 75–127 (2017).CrossRef D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci. 90, 75–127 (2017).CrossRef
28.
Zurück zum Zitat L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov, “Simulation of metal-graphene composites by molecular dynamics: a review,” Lett. Mater. 10, 351–360 (2020).CrossRef L. Safina, J. Baimova, K. Krylova, R. Murzaev, and R. Mulyukov, “Simulation of metal-graphene composites by molecular dynamics: a review,” Lett. Mater. 10, 351–360 (2020).CrossRef
29.
Zurück zum Zitat K. Chu and C. Jia, “Enhanced strength in bulk graphene-copper composites,” Phys. Status Solidi A 211, 184–190 (2014).CrossRef K. Chu and C. Jia, “Enhanced strength in bulk graphene-copper composites,” Phys. Status Solidi A 211, 184–190 (2014).CrossRef
30.
Zurück zum Zitat H. J. Choi, J. H. Shin, and D. H. Bae, “Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes,” Compos. Sci. Technol. 71, 1699–1705 (2011).CrossRef H. J. Choi, J. H. Shin, and D. H. Bae, “Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes,” Compos. Sci. Technol. 71, 1699–1705 (2011).CrossRef
31.
Zurück zum Zitat R. R. Jiang, X. F. Zhou, and Z. P. Liu, “Electroless Ni-plated graphene for tensile strength enhancement of copper,” Mater. Sci. Eng., A 679, 323–328 (2017).CrossRef R. R. Jiang, X. F. Zhou, and Z. P. Liu, “Electroless Ni-plated graphene for tensile strength enhancement of copper,” Mater. Sci. Eng., A 679, 323–328 (2017).CrossRef
32.
Zurück zum Zitat H. Y. Yue, L. H. Yao, X. Gao, S. L. Zhang, E. Guo, H. Zhang, X. Y. Lin, and B. Wang, “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloy Compd. 691, 755–762 (2017).CrossRef H. Y. Yue, L. H. Yao, X. Gao, S. L. Zhang, E. Guo, H. Zhang, X. Y. Lin, and B. Wang, “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloy Compd. 691, 755–762 (2017).CrossRef
33.
Zurück zum Zitat D. D. Zhang and Z. J. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. Alloy Compd. 654, 226–233 (2016).CrossRef D. D. Zhang and Z. J. Zhan, “Strengthening effect of graphene derivatives in copper matrix composites,” J. Alloy Compd. 654, 226–233 (2016).CrossRef
34.
Zurück zum Zitat D. D. Zhang and Z. J. Zhan, “Experimental investigation of interfaces in graphene materials/copper composites from a new perspective,” RSC Adv. 6, 52219–52226 (2016).CrossRef D. D. Zhang and Z. J. Zhan, “Experimental investigation of interfaces in graphene materials/copper composites from a new perspective,” RSC Adv. 6, 52219–52226 (2016).CrossRef
35.
Zurück zum Zitat Y. K. Chen, X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao, “Fabrication of in-situ grown graphene reinforced Cu matrix composites,” Sci. Rep. 6, 19363 (2016).CrossRef Y. K. Chen, X. Zhang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, P. Nash, and N. Q. Zhao, “Fabrication of in-situ grown graphene reinforced Cu matrix composites,” Sci. Rep. 6, 19363 (2016).CrossRef
36.
Zurück zum Zitat K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, and S. Liu, “Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites,” Compos. Mater. Sci. 117, 294–299 (2016).CrossRef K. Duan, F. Zhu, K. Tang, L. He, Y. Chen, and S. Liu, “Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites,” Compos. Mater. Sci. 117, 294–299 (2016).CrossRef
37.
Zurück zum Zitat S. Zhang, P. Huang, and F. Wang, “Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation,” Mater. Des. 190, 108555 (2020).CrossRef S. Zhang, P. Huang, and F. Wang, “Graphene-boundary strengthening mechanism in Cu/graphene nanocomposites: A molecular dynamics simulation,” Mater. Des. 190, 108555 (2020).CrossRef
38.
Zurück zum Zitat S. Weng, H. Ning, T. Fu, N. Hu, Y. Zhao, C. Huang, and X. Peng, “Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression,” Sci. Rep. 8, 3089 (2018).CrossRef S. Weng, H. Ning, T. Fu, N. Hu, Y. Zhao, C. Huang, and X. Peng, “Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression,” Sci. Rep. 8, 3089 (2018).CrossRef
39.
Zurück zum Zitat X. Liu, F. Wang, W. Wang, and H. Wu, “Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation,” Carbon 107, 680–688 (2016).CrossRef X. Liu, F. Wang, W. Wang, and H. Wu, “Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation,” Carbon 107, 680–688 (2016).CrossRef
40.
Zurück zum Zitat J. Liu, Y. Y. Zhang, H. N. Zhang, and J. Yang, “Mechanical properties of graphene-reinforced aluminium composite with modified substrate surface: a molecular dynamics study,” Nanotechnology 32, 085712 (2021).CrossRef J. Liu, Y. Y. Zhang, H. N. Zhang, and J. Yang, “Mechanical properties of graphene-reinforced aluminium composite with modified substrate surface: a molecular dynamics study,” Nanotechnology 32, 085712 (2021).CrossRef
41.
Zurück zum Zitat Z. Y. Liu, L. H. Wang, Y. N. Zan, W. G. Wang, B. L. Xiao, D. Wang, Q. Z. Wang, D. R. Ni, and Z. Y. Ma, “Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding,” Composites, Part B 199, 108268 (2020).CrossRef Z. Y. Liu, L. H. Wang, Y. N. Zan, W. G. Wang, B. L. Xiao, D. Wang, Q. Z. Wang, D. R. Ni, and Z. Y. Ma, “Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding,” Composites, Part B 199, 108268 (2020).CrossRef
42.
Zurück zum Zitat X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Mater. Des. 94, 54–60 (2016).CrossRef X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, and B. Wang, “Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites,” Mater. Des. 94, 54–60 (2016).CrossRef
43.
Zurück zum Zitat Z. Y. Yang, D. D. Wang, Z. X. Lu, and W. J. Hu, “Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites,” Appl. Phys. Lett. 109, 191909 (2016).CrossRef Z. Y. Yang, D. D. Wang, Z. X. Lu, and W. J. Hu, “Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites,” Appl. Phys. Lett. 109, 191909 (2016).CrossRef
44.
Zurück zum Zitat F. Shuang and K. E. Aifantis, “Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study,” Carbon 172, 50–70 (2021).CrossRef F. Shuang and K. E. Aifantis, “Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: a molecular dynamics study,” Carbon 172, 50–70 (2021).CrossRef
45.
Zurück zum Zitat X. Zhou, X. Liu, J. Shang, and Q. Yang, “Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites,” Mech. Mater. 148, 103530 (2020).CrossRef X. Zhou, X. Liu, J. Shang, and Q. Yang, “Grain-size effect on plastic flow stress of nanolaminated polycrystalline aluminum/graphene composites,” Mech. Mater. 148, 103530 (2020).CrossRef
46.
Zurück zum Zitat R. Q. Han, H. Y. Song, J. Y. Wang, and Y. L. Li, “Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: Insights from molecular dynamics simulation,” Phys. B (Amsterdam, Neth.) 601, 412620 (2021). R. Q. Han, H. Y. Song, J. Y. Wang, and Y. L. Li, “Strengthening mechanism of Al matrix composites reinforced by nickel-coated graphene: Insights from molecular dynamics simulation,” Phys. B (Amsterdam, Neth.) 601, 412620 (2021).
47.
Zurück zum Zitat X. Zhou, X. Liu, J. Lei, and Q. Yang, “Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites,” Compos. Mater. Sci. 172, 109342 (2020).CrossRef X. Zhou, X. Liu, J. Lei, and Q. Yang, “Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites,” Compos. Mater. Sci. 172, 109342 (2020).CrossRef
48.
Zurück zum Zitat F. Shuang and K. E. Aifantis, “Relating the strength of graphene/metal composites to the graphene orientation and position,” Scr. Mater. 181, 70–75 (2020).CrossRef F. Shuang and K. E. Aifantis, “Relating the strength of graphene/metal composites to the graphene orientation and position,” Scr. Mater. 181, 70–75 (2020).CrossRef
49.
Zurück zum Zitat C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study,” Composites, Part B 182, 107610 (2020).CrossRef C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “The structural rearrangement with secondary reinforcement in graphene/nanotwinned copper nanocomposites: A molecular dynamics study,” Composites, Part B 182, 107610 (2020).CrossRef
50.
Zurück zum Zitat R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, “Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane,” Philos. Mag. Lett. 96, 322–329 (2016).CrossRef R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, “Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane,” Philos. Mag. Lett. 96, 322–329 (2016).CrossRef
51.
Zurück zum Zitat C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “Molecular dynamics simulation of the negative Poisson’s ratio in graphene/Cu nanolayered composites: Implications for scaffold design and telecommunication cables,” ACS Appl. Nano Mater. 3, 496–505 (2020).CrossRef C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, and R. Wang, “Molecular dynamics simulation of the negative Poisson’s ratio in graphene/Cu nanolayered composites: Implications for scaffold design and telecommunication cables,” ACS Appl. Nano Mater. 3, 496–505 (2020).CrossRef
52.
Zurück zum Zitat C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, R. Wang, and K. Tieu, “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites,” Carbon 143, 125–137 (2019).CrossRef C. Zhang, C. Lu, L. Q. Pei, J. Q. Li, R. Wang, and K. Tieu, “The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites,” Carbon 143, 125–137 (2019).CrossRef
53.
Zurück zum Zitat X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, “Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface,” Appl. Phys. Lett. 104, 231901 (2014).CrossRef X. Y. Liu, F. C. Wang, H. A. Wu, and W. Q. Wang, “Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface,” Appl. Phys. Lett. 104, 231901 (2014).CrossRef
54.
Zurück zum Zitat C. Zhang, A. Godbole, G. Michal, and C. Lu, “High shock resistance and self-healing ability of graphene/nanotwinned Cu nanolayered composites,” J. Alloy Compd. 860, 158435 (2021).CrossRef C. Zhang, A. Godbole, G. Michal, and C. Lu, “High shock resistance and self-healing ability of graphene/nanotwinned Cu nanolayered composites,” J. Alloy Compd. 860, 158435 (2021).CrossRef
55.
Zurück zum Zitat X. J. Long, B. Li, L. Wang, J. Y. Huang, J. Zhu, and S. N. Luo, “Shock response of Cu/graphene nanolayered composites,” Carbon 103, 457–463 (2016).CrossRef X. J. Long, B. Li, L. Wang, J. Y. Huang, J. Zhu, and S. N. Luo, “Shock response of Cu/graphene nanolayered composites,” Carbon 103, 457–463 (2016).CrossRef
56.
Zurück zum Zitat S. Bashirvand and A. Montazeri, “New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study,” Mater. Des. 91, 306–313 (2016).CrossRef S. Bashirvand and A. Montazeri, “New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study,” Mater. Des. 91, 306–313 (2016).CrossRef
57.
Zurück zum Zitat R. Ishraaq, M. Rashid, and S. M. Nahid, “A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix,” Compos. Mater. Sci. 196, Art. 110558 (2021). R. Ishraaq, M. Rashid, and S. M. Nahid, “A novel theoretical model for predicting the optimum number of layers of multiwall carbon nanotube for reinforcing iron and molecular dynamics investigation of the failure mechanism of multi-grained matrix,” Compos. Mater. Sci. 196, Art. 110558 (2021).
58.
Zurück zum Zitat B. K. Choi, G. H. Yoon, and S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites, Part B 91, 119–125 (2016).CrossRef B. K. Choi, G. H. Yoon, and S. Lee, “Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading,” Composites, Part B 91, 119–125 (2016).CrossRef
59.
Zurück zum Zitat S. Dong, J. Zhou, H. Liu, and D. Qi, “Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites,” Compos. Mater. Sci. 101, 8–15 (2015).CrossRef S. Dong, J. Zhou, H. Liu, and D. Qi, “Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites,” Compos. Mater. Sci. 101, 8–15 (2015).CrossRef
60.
Zurück zum Zitat R. Ishraaq, S. M. Nahid, S. Chhetri, O. Gautam, and A. M. Afsar, “A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite,” Compos. Mater. Sci. 174, 109486 (2020).CrossRef R. Ishraaq, S. M. Nahid, S. Chhetri, O. Gautam, and A. M. Afsar, “A molecular dynamics investigation for predicting the optimum fiber radius and the effect of various parameters on the mechanical properties of carbon nanotube reinforced iron composite,” Compos. Mater. Sci. 174, 109486 (2020).CrossRef
61.
Zurück zum Zitat D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, “Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM),” J. Mech. Sci. Technol. 32, 5845–5853 (2018).CrossRef D. M. Park, J. H. Kim, S. J. Lee, and G. H. Yoon, “Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM),” J. Mech. Sci. Technol. 32, 5845–5853 (2018).CrossRef
62.
Zurück zum Zitat M. E. Suk, “Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites,” Mater. Express 9, 801–807 (2019).CrossRef M. E. Suk, “Enhanced tensile properties of weight-reduced nanoporous carbon nanotube-aluminum composites,” Mater. Express 9, 801–807 (2019).CrossRef
63.
Zurück zum Zitat P. Wang, Q. Cao, H. Wang, Y. Nie, S. Liu, and Q. Peng, “Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes,” Nanotechnology 31, 115703 (2020).CrossRef P. Wang, Q. Cao, H. Wang, Y. Nie, S. Liu, and Q. Peng, “Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes,” Nanotechnology 31, 115703 (2020).CrossRef
64.
Zurück zum Zitat X. Zhou, S. Song, L. Li, and R. Zhang, “Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes,” J. Compos. Mater. 50, 191–200 (2015).CrossRef X. Zhou, S. Song, L. Li, and R. Zhang, “Molecular dynamics simulation for mechanical properties of magnesium matrix composites reinforced with nickel-coated single-walled carbon nanotubes,” J. Compos. Mater. 50, 191–200 (2015).CrossRef
65.
Zurück zum Zitat Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.‑B. Xiong, Q. Guo, Z. Li, and D. Zhang, “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon 146, 17–27 (2019).CrossRef Y. Jiang, R. Xu, Z. Tan, G. Ji, G. Fan, Z. Li, D.‑B. Xiong, Q. Guo, Z. Li, and D. Zhang, “Interface-induced strain hardening of graphene nanosheet/aluminum composites,” Carbon 146, 17–27 (2019).CrossRef
66.
Zurück zum Zitat X. Liu, J. Li, E. Liu, C. He, C. Shi, and N. Zhao, “Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite,” Mater. Sci. Eng., A 748, 52–58 (2019).CrossRef X. Liu, J. Li, E. Liu, C. He, C. Shi, and N. Zhao, “Towards strength-ductility synergy with favorable strengthening effect through the formation of a quasi-continuous graphene nanosheets coated Ni structure in aluminum matrix composite,” Mater. Sci. Eng., A 748, 52–58 (2019).CrossRef
67.
Zurück zum Zitat A. G. Sheinerman and M. Y. Gutkin, “Model of enhanced strength and ductility of metal/graphene composites with bimodal grain size distribution,” Metall. Mater. Trans. A 51, 189–199 (2020).CrossRef A. G. Sheinerman and M. Y. Gutkin, “Model of enhanced strength and ductility of metal/graphene composites with bimodal grain size distribution,” Metall. Mater. Trans. A 51, 189–199 (2020).CrossRef
68.
Zurück zum Zitat V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon-carbide reinforced aluminum composites,” Scr. Metall. 20, 43–48 (1986).CrossRef V. C. Nardone and K. M. Prewo, “On the strength of discontinuous silicon-carbide reinforced aluminum composites,” Scr. Metall. 20, 43–48 (1986).CrossRef
69.
Zurück zum Zitat R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol. 72, 1459–1476 (2012).CrossRef R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: A review,” Compos. Sci. Technol. 72, 1459–1476 (2012).CrossRef
70.
Zurück zum Zitat G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos. 5, 327–333 (1984).CrossRef G. P. Tandon and G. J. Weng, “The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites,” Polym. Compos. 5, 327–333 (1984).CrossRef
71.
Zurück zum Zitat W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, New York, 2002).CrossRef W. Soboyejo, Mechanical Properties of Engineered Materials (CRC Press, New York, 2002).CrossRef
72.
Zurück zum Zitat H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).CrossRef H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Brit. J. Appl. Phys. 3, 72–79 (1952).CrossRef
73.
Zurück zum Zitat Z. L. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, “Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,” Carbon 88, 215–224 (2015).CrossRef Z. L. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, “Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,” Carbon 88, 215–224 (2015).CrossRef
74.
Zurück zum Zitat Z. L. Li, R. J. Young, N. R. Wilson, I. A. Kinloch, C. Valles, and Z. Li, “Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites,” Compos. Sci. Technol. 123, 125–133 (2016).CrossRef Z. L. Li, R. J. Young, N. R. Wilson, I. A. Kinloch, C. Valles, and Z. Li, “Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites,” Compos. Sci. Technol. 123, 125–133 (2016).CrossRef
75.
Zurück zum Zitat J. C. Halpin and K. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci. 16, 344–352 (1976).CrossRef J. C. Halpin and K. L. Kardos, “The Halpin–Tsai equations: a review,” Polym. Eng. Sci. 16, 344–352 (1976).CrossRef
76.
Zurück zum Zitat J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” J. Appl. Polymer Sci. 128, 4217–4223 (2013).CrossRef J. A. King, D. R. Klimek, I. Miskioglu, and G. M. Odegard, “Mechanical properties of graphene nanoplatelet/epoxy composites,” J. Appl. Polymer Sci. 128, 4217–4223 (2013).CrossRef
77.
Zurück zum Zitat A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence,” Phys. Rev. B 80, 035437 (2009).CrossRef A. Varykhalov and O. Rader, “Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence,” Phys. Rev. B 80, 035437 (2009).CrossRef
78.
Zurück zum Zitat M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109 (2010).CrossRef M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109 (2010).CrossRef
79.
Zurück zum Zitat L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, “Influence of copper crystal surface on the CVD growth of large area monolayer graphene,” Solid State Commun. 151, 509–513 (2011).CrossRef L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, “Influence of copper crystal surface on the CVD growth of large area monolayer graphene,” Solid State Commun. 151, 509–513 (2011).CrossRef
80.
Zurück zum Zitat L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Lett. 10, 3512–3516 (2010).CrossRef L. Gao, J. R. Guest, and N. P. Guisinger, “Epitaxial Graphene on Cu(111),” Nano Lett. 10, 3512–3516 (2010).CrossRef
81.
Zurück zum Zitat M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang, “Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity,” Carbon 117, 65–74 (2017).CrossRef M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, and D. Zhang, “Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity,” Carbon 117, 65–74 (2017).CrossRef
82.
Zurück zum Zitat R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mat. Sci. Eng. 81, 175–187 (1986).CrossRef R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Mat. Sci. Eng. 81, 175–187 (1986).CrossRef
83.
Zurück zum Zitat Y. Estrin and H. Mecking, “A unified phenomenological description of work-hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef Y. Estrin and H. Mecking, “A unified phenomenological description of work-hardening and creep based on one-parameter models,” Acta Metall. 32, 57–70 (1984).CrossRef
84.
Zurück zum Zitat W. J. Poole, J. D. Embury, and D. J. Lloyd, “Work hardening in aluminum alloys,” in Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Ed. by R. Lumley (Woodhead, New Delhi, 2011), pp. 307–344. W. J. Poole, J. D. Embury, and D. J. Lloyd, “Work hardening in aluminum alloys,” in Fundamentals of Aluminum Metallurgy: Production, Processing and Applications, Ed. by R. Lumley (Woodhead, New Delhi, 2011), pp. 307–344.
85.
Zurück zum Zitat M. E. Kassner, “Taylor hardening in five-power-law creep of metals and Class M alloys,” Acta Mater. 52, 1–9 (2004).CrossRef M. E. Kassner, “Taylor hardening in five-power-law creep of metals and Class M alloys,” Acta Mater. 52, 1–9 (2004).CrossRef
86.
Zurück zum Zitat A. Melander, “Critical resolved shear-stress of dispersion strengthened alloys,” Scand. J. Metall. 7, 109–113 (1978). A. Melander, “Critical resolved shear-stress of dispersion strengthened alloys,” Scand. J. Metall. 7, 109–113 (1978).
87.
Zurück zum Zitat J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982). J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982).
88.
Zurück zum Zitat G. Fribourg, Y. Brechet, A. Deschamps, and A. Simar, “Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy,” Acta Mater. 59, 3621–3635 (2011).CrossRef G. Fribourg, Y. Brechet, A. Deschamps, and A. Simar, “Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy,” Acta Mater. 59, 3621–3635 (2011).CrossRef
89.
Zurück zum Zitat H. Proudhon, W. J. Poole, X. Wang, and Y. Brechet, “The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111,” Philos. Mag. 88, 621–640 (2008).CrossRef H. Proudhon, W. J. Poole, X. Wang, and Y. Brechet, “The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA6111,” Philos. Mag. 88, 621–640 (2008).CrossRef
90.
Zurück zum Zitat J. da Costa Teixeira, L. Bourgeois, C. W. Sinclair, and C. R. Hutchinson, “The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation,” Acta Mater. 57, 6075–6089 (2009).CrossRef J. da Costa Teixeira, L. Bourgeois, C. W. Sinclair, and C. R. Hutchinson, “The effect of shear-resistant, plate-shaped precipitates on the work hardening of Al alloys: Towards a prediction of the strength–elongation correlation,” Acta Mater. 57, 6075–6089 (2009).CrossRef
91.
Zurück zum Zitat T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge University, Cambridge, 1993).CrossRef T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites (Cambridge University, Cambridge, 1993).CrossRef
92.
Zurück zum Zitat R. Xu, Z. Tan, G. Fan, G. Ji, Z. Li, Q. Guo, Z. Li, and D. Zhang, “Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites,” Int. J. Plast. 120, 278–295 (2019).CrossRef R. Xu, Z. Tan, G. Fan, G. Ji, Z. Li, Q. Guo, Z. Li, and D. Zhang, “Microstructure-based modeling on structure-mechanical property relationships in carbon nanotube/aluminum composites,” Int. J. Plast. 120, 278–295 (2019).CrossRef
93.
Zurück zum Zitat L. M. Brown and D. R. Clarke, “Work hardening due to internal stresses in composite materials,” Acta Metall. 23, 821–830 (1975).CrossRef L. M. Brown and D. R. Clarke, “Work hardening due to internal stresses in composite materials,” Acta Metall. 23, 821–830 (1975).CrossRef
94.
Zurück zum Zitat Li X. A. Liu, J. T. Robinson, Z. Q. Wei, P. E. Sheehan, B. H. Houston, and E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films,” Diamond Relat. Mater. 19, 875–878 (2010).CrossRef Li X. A. Liu, J. T. Robinson, Z. Q. Wei, P. E. Sheehan, B. H. Houston, and E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films,” Diamond Relat. Mater. 19, 875–878 (2010).CrossRef
95.
Zurück zum Zitat Y. T. Zhu and X. L. Wu, “Perspective on hetero-deformation induced (HDI) hardening and back stress,” Mater. Res. Lett. 7, 393–398 (2019).CrossRef Y. T. Zhu and X. L. Wu, “Perspective on hetero-deformation induced (HDI) hardening and back stress,” Mater. Res. Lett. 7, 393–398 (2019).CrossRef
96.
Zurück zum Zitat C. W. Sinclair, W. J. Poole, and Y. Brechet, “A model for the grain size dependent work hardening of copper,” Scr. Mater. 55, 739–742 (2006).CrossRef C. W. Sinclair, W. J. Poole, and Y. Brechet, “A model for the grain size dependent work hardening of copper,” Scr. Mater. 55, 739–742 (2006).CrossRef
97.
Zurück zum Zitat M. Delince, Y. Brechet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, “Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model,” Acta Mater. 55, 2337–2350 (2007).CrossRef M. Delince, Y. Brechet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, “Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model,” Acta Mater. 55, 2337–2350 (2007).CrossRef
98.
Zurück zum Zitat L. Zhao, Q. Guo, Z. Li, D. -B. Xiong, S. Osovski, Y. Su, and D. Zhang, “Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes,” Int. J. Plast. 116, 265–279 (2019).CrossRef L. Zhao, Q. Guo, Z. Li, D. -B. Xiong, S. Osovski, Y. Su, and D. Zhang, “Strengthening and deformation mechanisms in nanolaminated graphene-Al composite micro-pillars affected by graphene in-plane sizes,” Int. J. Plast. 116, 265–279 (2019).CrossRef
99.
Zurück zum Zitat L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.‑B. Xiong, Y. Su, and D. Zhang, “Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites,” Metall. Mater. Trans. A 50, 1113–1118 (2019).CrossRef L. Zhao, Q. Guo, Y. Shi, Y. Liu, S. Osovski, Z. Li, D.‑B. Xiong, Y. Su, and D. Zhang, “Interfacial effect on the deformation mechanism of bulk nanolaminated graphene-Al composites,” Metall. Mater. Trans. A 50, 1113–1118 (2019).CrossRef
100.
Zurück zum Zitat Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang, “Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries,” Nano Lett. 18, 6255–6264 (2018).CrossRef Z. Li, H. Wang, Q. Guo, Z. Li, D. B. Xiong, Y. Su, H. Gao, X. Li, and D. Zhang, “Regain strain-hardening in high-strength metals by nanofiller incorporation at grain boundaries,” Nano Lett. 18, 6255–6264 (2018).CrossRef
101.
Zurück zum Zitat Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, “Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites,” Nat. Commun. 4, 2114 (2013).CrossRef Y. Kim, J. Lee, M. S. Yeom, J. W. Shin, H. Kim, Y. Cui, J. W. Kysar, J. Hone, Y. Jung, S. Jeon, and S. M. Han, “Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites,” Nat. Commun. 4, 2114 (2013).CrossRef
102.
Zurück zum Zitat I. A. Ovid’ko and A. G. Sheinerman, “Competition between plastic deformation and fracture processes in metal–graphene layered composites,” J. Phys. D 47, 495302 (2014).CrossRef I. A. Ovid’ko and A. G. Sheinerman, “Competition between plastic deformation and fracture processes in metal–graphene layered composites,” J. Phys. D 47, 495302 (2014).CrossRef
103.
Zurück zum Zitat A. G. Sheinerman, “Modeling of structure and interface controlled strength of laminated metal/graphene composites,” Mech. Mater. 158, Art. 103888 (2021).CrossRef A. G. Sheinerman, “Modeling of structure and interface controlled strength of laminated metal/graphene composites,” Mech. Mater. 158, Art. 103888 (2021).CrossRef
104.
Zurück zum Zitat S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng, “Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties,” Sci. Rep. 6, 38824 (2016).CrossRef S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng, “Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties,” Sci. Rep. 6, 38824 (2016).CrossRef
105.
Zurück zum Zitat M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, and V. Klemm, “Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties,” Mater. Sci. Eng., A 772, 138820 (2020).CrossRef M. Khoshghadam-Pireyousefan, R. Rahmanifard, L. Orovcik, P. Švec, and V. Klemm, “Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: Synthesis, microstructure, and mechanical properties,” Mater. Sci. Eng., A 772, 138820 (2020).CrossRef
106.
Zurück zum Zitat O. Y. Kurapova, I. V. Lomakin, S. N. Sergeev, E. N. Solovyeva, A. P. Zhilyaev, I. Y. Archakov, and V. G. Konakov, “Fabrication of nickel–graphene composites with superior hardness,” J. Alloy Compd. 835, 155463 (2020).CrossRef O. Y. Kurapova, I. V. Lomakin, S. N. Sergeev, E. N. Solovyeva, A. P. Zhilyaev, I. Y. Archakov, and V. G. Konakov, “Fabrication of nickel–graphene composites with superior hardness,” J. Alloy Compd. 835, 155463 (2020).CrossRef
107.
Zurück zum Zitat L. L. Zhu, C. S. Wen, C. Y. Gao, X. Guo, Z. Chen, and J. Lu, “Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling,” Int. J. Plast. 114, 272–288 (2019).CrossRef L. L. Zhu, C. S. Wen, C. Y. Gao, X. Guo, Z. Chen, and J. Lu, “Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling,” Int. J. Plast. 114, 272–288 (2019).CrossRef
108.
Zurück zum Zitat S. C. Cao, J. B. Liu, L. L. Zhu, L. Li, M. Dao, J. Lu, and R. O. Ritchie, “Nature-inspired hierarchical steels,” Sci. Rep. 8, 5088 (2018).CrossRef S. C. Cao, J. B. Liu, L. L. Zhu, L. Li, M. Dao, J. Lu, and R. O. Ritchie, “Nature-inspired hierarchical steels,” Sci. Rep. 8, 5088 (2018).CrossRef
109.
Zurück zum Zitat Z. W. Ma, J. B. Liu, G. Wang, H. T. Wang, Y. J. Wei, and H. J. Gao, “Strength gradient enhances fatigue resistance of steels,” Sci. Rep. 6, 22156 (2016).CrossRef Z. W. Ma, J. B. Liu, G. Wang, H. T. Wang, Y. J. Wei, and H. J. Gao, “Strength gradient enhances fatigue resistance of steels,” Sci. Rep. 6, 22156 (2016).CrossRef
110.
Zurück zum Zitat X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016).CrossRef X. L. Wu, M. X. Yang, F. P. Yuan, L. Chen, and Y. T. Zhu, “Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility,” Acta Mater. 112, 337–346 (2016).CrossRef
111.
Zurück zum Zitat X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. T. Zhu, “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. U.S.A. 111, 7197–7201 (2014).CrossRef X. L. Wu, P. Jiang, L. Chen, F. P. Yuan, and Y. T. T. Zhu, “Extraordinary strain hardening by gradient structure,” Proc. Natl. Acad. Sci. U.S.A. 111, 7197–7201 (2014).CrossRef
112.
Zurück zum Zitat Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014).CrossRef Y. J. Wei, Y. Q. Li, L. C. Zhu, Y. Liu, X. Q. Lei, G. Wang, Y. X. Wu, Z. L. Mi, J. B. Liu, H. T. Wang, and H. J. Gao, “Evading the strength- ductility trade-off dilemma in steel through gradient hierarchical nanotwins,” Nat. Commun. 5, 3580 (2014).CrossRef
113.
Zurück zum Zitat H. T. Wang, N. R. Tao, and K. Lu, “Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel,” Scr. Mater. 68, 22–27 (2013).CrossRef H. T. Wang, N. R. Tao, and K. Lu, “Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel,” Scr. Mater. 68, 22–27 (2013).CrossRef
114.
Zurück zum Zitat A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, “The influence of strain rate on the microstructure transition of 304 stainless steel,” Acta Mater. 59, 3697–3709 (2011).CrossRef A. Y. Chen, H. H. Ruan, J. Wang, H. L. Chan, Q. Wang, Q. Li, and J. Lu, “The influence of strain rate on the microstructure transition of 304 stainless steel,” Acta Mater. 59, 3697–3709 (2011).CrossRef
115.
Zurück zum Zitat T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331, 1587–1590 (2011).CrossRef T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, “Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper,” Science 331, 1587–1590 (2011).CrossRef
116.
Zurück zum Zitat H. T. Wang, N. R. Tao, and K. Lu, “Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains,” Acta Mater. 60, 4027–4040 (2012).CrossRef H. T. Wang, N. R. Tao, and K. Lu, “Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains,” Acta Mater. 60, 4027–4040 (2012).CrossRef
117.
Zurück zum Zitat J. G. Kim, N. A. Enikeev, J. B. Seol, M. M. Abramova, M. V. Karavaeva, R. Z. Valiev, C. G. Park, and H. S. Kim, “Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel,” Sci. Rep. 8, 11200 (2018).CrossRef J. G. Kim, N. A. Enikeev, J. B. Seol, M. M. Abramova, M. V. Karavaeva, R. Z. Valiev, C. G. Park, and H. S. Kim, “Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel,” Sci. Rep. 8, 11200 (2018).CrossRef
118.
Zurück zum Zitat F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, and K. Lu, “Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains,” Acta Mater. 81, 487–500 (2014).CrossRef F. K. Yan, N. R. Tao, F. Archie, I. Gutierrez-Urrutia, D. Raabe, and K. Lu, “Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains,” Acta Mater. 81, 487–500 (2014).CrossRef
119.
Zurück zum Zitat F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater. 60, 1059–1071 (2012).CrossRef F. K. Yan, G. Z. Liu, N. R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater. 60, 1059–1071 (2012).CrossRef
120.
Zurück zum Zitat K. Lu, F. K. Yan, H. T. Wang, and N. R. Tao, “Strengthening austenitic steels by using nanotwinned austenitic grains,” Scr. Mater. 66, 878–883 (2012).CrossRef K. Lu, F. K. Yan, H. T. Wang, and N. R. Tao, “Strengthening austenitic steels by using nanotwinned austenitic grains,” Scr. Mater. 66, 878–883 (2012).CrossRef
121.
Zurück zum Zitat Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation,” Scr. Mater. 59, 475–478 (2008).CrossRef Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, “Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation,” Scr. Mater. 59, 475–478 (2008).CrossRef
122.
Zurück zum Zitat X. L. Wu, F. P. Yuan, M. X. Yang, P. Jiang, C. X. Zhang, L. Chen, Y. G. Wei, and E. Ma, “Nanodomained nickel unite nanocrystal strength with coarse-grain ductility,” Sci. Rep. 5, 11728 (2015).CrossRef X. L. Wu, F. P. Yuan, M. X. Yang, P. Jiang, C. X. Zhang, L. Chen, Y. G. Wei, and E. Ma, “Nanodomained nickel unite nanocrystal strength with coarse-grain ductility,” Sci. Rep. 5, 11728 (2015).CrossRef
123.
Zurück zum Zitat M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, and K. Wu, “Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Compos. Sci. Technol. 118, 85–93 (2015).CrossRef M. J. Shen, X. J. Wang, M. F. Zhang, M. Y. Zheng, and K. Wu, “Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites,” Compos. Sci. Technol. 118, 85–93 (2015).CrossRef
124.
Zurück zum Zitat K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013).CrossRef K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013).CrossRef
125.
Zurück zum Zitat G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui, and T. Szilagyi, “Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size,” Mater. Sci. Eng., A 527, 1206–1214 (2013).CrossRef G. Dirras, J. Gubicza, S. Ramtani, Q. H. Bui, and T. Szilagyi, “Microstructure and mechanical characteristics of bulk polycrystalline Ni consolidated from blends of powders with different particle size,” Mater. Sci. Eng., A 527, 1206–1214 (2013).CrossRef
126.
Zurück zum Zitat Y. H. Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou, and E. L. Lavernia, “High tensile ductility and strength in bulk nanostructured nickel,” Adv. Mater. 20, 3028–3033 (2008).CrossRef Y. H. Zhao, T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, W. Liu, Y. T. Zhu, Y. Z. Zhou, and E. L. Lavernia, “High tensile ductility and strength in bulk nanostructured nickel,” Adv. Mater. 20, 3028–3033 (2008).CrossRef
127.
Zurück zum Zitat D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, “Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility,” Scr. Mater. 49, 297–302 (2003).CrossRef D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia, “Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility,” Scr. Mater. 49, 297–302 (2003).CrossRef
128.
Zurück zum Zitat C. C. Koch, “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,” Scr. Mater. 49, 657–662 (2003).CrossRef C. C. Koch, “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,” Scr. Mater. 49, 657–662 (2003).CrossRef
129.
Zurück zum Zitat Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Nature 419, 912–915 (2002).CrossRef Y. M. Wang, M. W. Chen, F. H. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal,” Nature 419, 912–915 (2002).CrossRef
130.
Zurück zum Zitat V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A 32, 2335–2343 (2001).CrossRef V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A 32, 2335–2343 (2001).CrossRef
131.
Zurück zum Zitat A. Considère, « Memoire sur l’emploi du fer et de l’acier dans les constructions," Ann. Ponts Chaussées 9, 575–775 (1885). A. Considère, « Memoire sur l’emploi du fer et de l’acier dans les constructions," Ann. Ponts Chaussées 9, 575–775 (1885).
132.
Zurück zum Zitat Z. Liu, S. M. Zhang, J. R. Yang, J. Z. Liu, Y. L. Yang, and Q. S. Zheng, “Interlayer shear strength of single crystalline graphite,” Acta Mech. Sin. 28, 978–982 (2012).CrossRef Z. Liu, S. M. Zhang, J. R. Yang, J. Z. Liu, Y. L. Yang, and Q. S. Zheng, “Interlayer shear strength of single crystalline graphite,” Acta Mech. Sin. 28, 978–982 (2012).CrossRef
133.
Zurück zum Zitat S. V. Bobylev, M. Y. Gutkin, and A. G. Scheinerman, “Yield strength of metal–graphene composites with a homogeneous and bimodal grain structure,” Mech. Solids 55, 22–31 (2020).CrossRef S. V. Bobylev, M. Y. Gutkin, and A. G. Scheinerman, “Yield strength of metal–graphene composites with a homogeneous and bimodal grain structure,” Mech. Solids 55, 22–31 (2020).CrossRef
134.
Zurück zum Zitat E. I. Salama, A. Abbas, and A. M. K. Esawi, “Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites,” Composites, Part A 99, 84–93 (2017).CrossRef E. I. Salama, A. Abbas, and A. M. K. Esawi, “Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites,” Composites, Part A 99, 84–93 (2017).CrossRef
135.
Zurück zum Zitat Z. Y. Liu, K. Ma, G. H. Fan, K. Zhao, J. F. Zhang, B. L. Xiao, and Z. Y. Ma, “Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation,” Carbon 157, 602–613 (2020).CrossRef Z. Y. Liu, K. Ma, G. H. Fan, K. Zhao, J. F. Zhang, B. L. Xiao, and Z. Y. Ma, “Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation,” Carbon 157, 602–613 (2020).CrossRef
136.
Zurück zum Zitat X. Fu, Z. Tan, X. Min, Z. Li, Z. Yue, G. Fan, D.‑B. Xiong, and Z. Li, “Trimodal grain structure enables high-strength CNT/Al–Cu–Mg composites higher ductility by powder assembly & alloying,” Mater. Res. Lett. 9, 50–57 (2020).CrossRef X. Fu, Z. Tan, X. Min, Z. Li, Z. Yue, G. Fan, D.‑B. Xiong, and Z. Li, “Trimodal grain structure enables high-strength CNT/Al–Cu–Mg composites higher ductility by powder assembly & alloying,” Mater. Res. Lett. 9, 50–57 (2020).CrossRef
Metadaten
Titel
Mechanical Properties of Metal Matrix Composites with Graphene and Carbon Nanotubes
verfasst von
A. G. Sheinerman
Publikationsdatum
01.01.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010124

Weitere Artikel der Ausgabe 1/2022

Physics of Metals and Metallography 1/2022 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Properties of a SHS Cu–Ti–C–B Composite