Skip to main content
Erschienen in: Journal of Materials Science 17/2020

06.03.2020 | Chemical routes to materials

Effect of electric current on the microstructural evolution and tribological behavior of highly oriented pyrolytic graphite

verfasst von: Yang Sun, Jianguo Li, Hailin Yang, Xiao Kang, Lei Zhang

Erschienen in: Journal of Materials Science | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sliding electrical contact behavior on the perpendicular surface of highly oriented pyrolytic graphite has been systematically studied under various electric current densities and environmental atmospheres. The results indicated that the friction coefficient decreased from 0.30 to 0.23 in wet air, and it increased from 0.32 to 0.39 in dry N2 with increasing electric current density from 0 to 50 A/cm2. The opposite tribological behavior induced by electric current between wet air and dry N2 was attributed to the changes in the microstructure and carbon dangling bonds. Electric current caused the nanostructure defects and carbon dangling bonds to increase in both wet air and dry N2. In wet air, these carbon dangling bonds were passivated by –H and –OH, which reduced the sliding force and caused the debris parallel to the sliding direction, thereby decreasing the friction coefficient. In dry N2, however, the carbon dangling bonds could not be passivated for the lack of water molecules. As a result, electric current oriented the debris perpendicular to the sliding direction, and the friction coefficient increased. In addition, it provided a novel strategy for tuning the tribological behavior of carbon materials in situ by adjusting the environmental atmospheres and electric current density.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Milenko B, Valery VK, Nikolai KM (2007) Electrical contacts fundamentals, applications and technology. CRC Press, Boca Raton Milenko B, Valery VK, Nikolai KM (2007) Electrical contacts fundamentals, applications and technology. CRC Press, Boca Raton
2.
Zurück zum Zitat Poljanec D, Kalin M, Kumar L (2018) Influence of contact parameters on the tribological behaviour of various graphite/graphite sliding electrical contacts. Wear 406–407:75–83CrossRef Poljanec D, Kalin M, Kumar L (2018) Influence of contact parameters on the tribological behaviour of various graphite/graphite sliding electrical contacts. Wear 406–407:75–83CrossRef
3.
Zurück zum Zitat Holm E (1962) Specific friction force in a graphite brush contact as a function of the temperature in the contact spots. J Appl Phys 33:156–163CrossRef Holm E (1962) Specific friction force in a graphite brush contact as a function of the temperature in the contact spots. J Appl Phys 33:156–163CrossRef
4.
Zurück zum Zitat Lancaster JK, Stanley IW (1964) The effect of current on the friction of carbon brush materials. Br J Appl Phys 15:29–41CrossRef Lancaster JK, Stanley IW (1964) The effect of current on the friction of carbon brush materials. Br J Appl Phys 15:29–41CrossRef
5.
Zurück zum Zitat Csapo E, Zaidi H, Paulmier D, Kadiri EK, Bouchoucha A, Robert F (1995) Influence of the electrical current on the graphite surface in an electrical sliding contact. Surf Coat Technol 76–77:421–424CrossRef Csapo E, Zaidi H, Paulmier D, Kadiri EK, Bouchoucha A, Robert F (1995) Influence of the electrical current on the graphite surface in an electrical sliding contact. Surf Coat Technol 76–77:421–424CrossRef
6.
Zurück zum Zitat Senouci A, Frene J, Zaidi H (1999) Wear mechanism in graphite-copper electrical sliding contact. Wear 225–229:949–953CrossRef Senouci A, Frene J, Zaidi H (1999) Wear mechanism in graphite-copper electrical sliding contact. Wear 225–229:949–953CrossRef
7.
Zurück zum Zitat Min C, Liu D, Shen C et al (2018) Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 117:217–224CrossRef Min C, Liu D, Shen C et al (2018) Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 117:217–224CrossRef
8.
Zurück zum Zitat Bai G, Wang J, Yang Z, Wang H, Wang Z, Yang S (2014) Preparation of a highly effective lubricating oil additive-ceria/graphene composite. RSC Adv 4:47096–47105CrossRef Bai G, Wang J, Yang Z, Wang H, Wang Z, Yang S (2014) Preparation of a highly effective lubricating oil additive-ceria/graphene composite. RSC Adv 4:47096–47105CrossRef
9.
Zurück zum Zitat Shin YJ, Stromberg R, Nay R, Huang H, Wee ATS, Yang H, Bhatia CS (2011) Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49:4070–4073CrossRef Shin YJ, Stromberg R, Nay R, Huang H, Wee ATS, Yang H, Bhatia CS (2011) Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49:4070–4073CrossRef
10.
Zurück zum Zitat Chen C, Xue P, Fan X, Wang C, Diao D (2018) Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sliding surfaces: short run-in period. Carbon 130:215–221CrossRef Chen C, Xue P, Fan X, Wang C, Diao D (2018) Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sliding surfaces: short run-in period. Carbon 130:215–221CrossRef
11.
Zurück zum Zitat Shi J, Wang Y, Gong Z, Zhang B, Wang C, Zhang J (2017) Nanocrystalline graphite formed at Fullerene-like carbon film frictional interface. Adv Mater Interfaces 4:1601113CrossRef Shi J, Wang Y, Gong Z, Zhang B, Wang C, Zhang J (2017) Nanocrystalline graphite formed at Fullerene-like carbon film frictional interface. Adv Mater Interfaces 4:1601113CrossRef
12.
Zurück zum Zitat Erdemir A, Ramirez G, Eryilmaz OL, Narayanan B, Liao Y, Kamath G, Sankaranarayanan SK (2016) Carbon-based tribofilms from lubricating oils. Nature 536:67–71CrossRef Erdemir A, Ramirez G, Eryilmaz OL, Narayanan B, Liao Y, Kamath G, Sankaranarayanan SK (2016) Carbon-based tribofilms from lubricating oils. Nature 536:67–71CrossRef
13.
Zurück zum Zitat Liao Y, Pourzal R, Wimmer MA, Jacobs JJ, Fischer A, Marks LD (2011) Graphitic tribological layers in metal-on-metal hip replacements. Science 334:1687–1690CrossRef Liao Y, Pourzal R, Wimmer MA, Jacobs JJ, Fischer A, Marks LD (2011) Graphitic tribological layers in metal-on-metal hip replacements. Science 334:1687–1690CrossRef
14.
Zurück zum Zitat Bhowmick S, Banerji A, Alpas AT (2015) Role of humidity in reducing sliding friction of multilayered graphene. Carbon 87:374–384CrossRef Bhowmick S, Banerji A, Alpas AT (2015) Role of humidity in reducing sliding friction of multilayered graphene. Carbon 87:374–384CrossRef
15.
Zurück zum Zitat Xiao J, Zhang L, Zhou K, Li J, Xie X, Li Z (2013) Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 65:53–62CrossRef Xiao J, Zhang L, Zhou K, Li J, Xie X, Li Z (2013) Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 65:53–62CrossRef
18.
Zurück zum Zitat Grandin M, Wiklund U (2013) Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite. Wear 302:1481–1491CrossRef Grandin M, Wiklund U (2013) Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite. Wear 302:1481–1491CrossRef
19.
Zurück zum Zitat Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31–42CrossRef Berman D, Erdemir A, Sumant AV (2014) Graphene: a new emerging lubricant. Mater Today 17:31–42CrossRef
20.
Zurück zum Zitat Berman D, Erdemir A, Sumant AV (2014) Graphene as a protective coating and superior lubricant for electrical contacts. Appl Phys Lett 105:231907CrossRef Berman D, Erdemir A, Sumant AV (2014) Graphene as a protective coating and superior lubricant for electrical contacts. Appl Phys Lett 105:231907CrossRef
21.
Zurück zum Zitat Bares JA, Argibay N, Dickrell PL, Bourne GR, Burris DL, Ziegert JC, Sawyer WG (2009) In situ graphite lubrication of metallic sliding electrical contacts. Wear 267:1462–1469CrossRef Bares JA, Argibay N, Dickrell PL, Bourne GR, Burris DL, Ziegert JC, Sawyer WG (2009) In situ graphite lubrication of metallic sliding electrical contacts. Wear 267:1462–1469CrossRef
22.
Zurück zum Zitat Xiao J, Zhang W, Zhang C (2018) Microstructure evolution and tribological performance of Cu-WS2 self-lubricating composites. Wear 412–413:109–119CrossRef Xiao J, Zhang W, Zhang C (2018) Microstructure evolution and tribological performance of Cu-WS2 self-lubricating composites. Wear 412–413:109–119CrossRef
23.
Zurück zum Zitat Li Z, Yang W, Wu Y, Wu S, Cai Z (2017) Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl Surf Sci 403:362–370CrossRef Li Z, Yang W, Wu Y, Wu S, Cai Z (2017) Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl Surf Sci 403:362–370CrossRef
24.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
25.
Zurück zum Zitat Xing T, Li LH, Hou L et al (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57:515–519CrossRef Xing T, Li LH, Hou L et al (2013) Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon 57:515–519CrossRef
26.
Zurück zum Zitat Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRef Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRef
27.
Zurück zum Zitat Hueso JL, Espinós JP, Caballero A, Cotrino J, González-Elipe AR (2007) XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 45:89–96CrossRef Hueso JL, Espinós JP, Caballero A, Cotrino J, González-Elipe AR (2007) XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 45:89–96CrossRef
28.
Zurück zum Zitat Diao J, Liu H, Wang J et al (2015) Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene. Chem Commun 51:3423–3425CrossRef Diao J, Liu H, Wang J et al (2015) Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene. Chem Commun 51:3423–3425CrossRef
29.
Zurück zum Zitat Zhao J, Mao J, Li Y, He Y, Luo J (2018) Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl Surf Sci 434:21–27CrossRef Zhao J, Mao J, Li Y, He Y, Luo J (2018) Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl Surf Sci 434:21–27CrossRef
30.
Zurück zum Zitat Erdemir A (2001) The role of hydrogen in tribological properties of diamond-like carbon films. Surf Coat Technol 146–147:292–297CrossRef Erdemir A (2001) The role of hydrogen in tribological properties of diamond-like carbon films. Surf Coat Technol 146–147:292–297CrossRef
31.
Zurück zum Zitat De Barros Bouchet M-I, Zilibotti G, Matta C, Righi MC, Vandenbulcke L, Vacher B, Martin J-M (2012) Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J Phys Chem C 116:6966–6972CrossRef De Barros Bouchet M-I, Zilibotti G, Matta C, Righi MC, Vandenbulcke L, Vacher B, Martin J-M (2012) Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J Phys Chem C 116:6966–6972CrossRef
32.
Zurück zum Zitat Qi Y, Konca E, Alpas AT (2006) Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf Sci 600:2955–2965CrossRef Qi Y, Konca E, Alpas AT (2006) Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf Sci 600:2955–2965CrossRef
33.
Zurück zum Zitat Lechner C, Pannier B, Baranek P, Forero-Martinez NC, Vach H (2016) First-principles study of the structural, electronic, dynamic, and mechanical properties of HOPG and diamond: influence of exchange-correlation functionals and dispersion interactions. J Phys Chem C 120:5083–5100CrossRef Lechner C, Pannier B, Baranek P, Forero-Martinez NC, Vach H (2016) First-principles study of the structural, electronic, dynamic, and mechanical properties of HOPG and diamond: influence of exchange-correlation functionals and dispersion interactions. J Phys Chem C 120:5083–5100CrossRef
34.
Zurück zum Zitat Kajita S, Righi MC (2016) A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon 103:193–199CrossRef Kajita S, Righi MC (2016) A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon 103:193–199CrossRef
35.
36.
Zurück zum Zitat Shilpa DSK, Afzal MAF, Srivastava S, Patil S, Sharma A (2016) Enhanced electrical conductivity of suspended carbon nanofibers: Effect of hollow structure and improved graphitization. Carbon 108:135–145CrossRef Shilpa DSK, Afzal MAF, Srivastava S, Patil S, Sharma A (2016) Enhanced electrical conductivity of suspended carbon nanofibers: Effect of hollow structure and improved graphitization. Carbon 108:135–145CrossRef
37.
Zurück zum Zitat Lanza M, Wang Y, Gao T et al (2013) Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res 6:485–495CrossRef Lanza M, Wang Y, Gao T et al (2013) Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res 6:485–495CrossRef
Metadaten
Titel
Effect of electric current on the microstructural evolution and tribological behavior of highly oriented pyrolytic graphite
verfasst von
Yang Sun
Jianguo Li
Hailin Yang
Xiao Kang
Lei Zhang
Publikationsdatum
06.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04518-5

Weitere Artikel der Ausgabe 17/2020

Journal of Materials Science 17/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.