Skip to main content
Erschienen in: Polymer Bulletin 4/2017

12.07.2016 | Original Paper

Effect of epoxidized soybean oil grafted poly(12-hydroxy stearate) on mechanical and thermal properties of microcrystalline cellulose fibers/polypropylene composites

verfasst von: Jin Yang, Shaorong Lu, Lulu Pan, Qiyun Luo, Laifu Song, Lingyan Wu, Jinhong Yu

Erschienen in: Polymer Bulletin | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new green compatibilizer named epoxidized soybean oil grafted poly(12-hydroxy stearate) (ESO-g-PHS) was successfully synthesized using 12-hydroxy stearic acid and epoxidized soybean oil (ESO). The chemical structure of ESO-g-PHS was investigated through Fourier transformed infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography. ESO-g-PHS was used as a compatibilizer to enhance the interfacial compatibility between polypropylene (PP) and microcrystalline cellulose fibers (MCF). The results showed that the impact strength and tensile strength were 33.55 and 27.57 MPa when the content loading of MCF reached 10 wt% and ESO-g-PHS was 4 wt%, which enhanced by 75.4 and 30.04 %, respectively, compared to that of composites without ESO-g-PHS. In addition, the SEM images of the fracture surfaces display that PP was highly bonded to MCF with ESO-g-PHS treated. In addition, the wide angle X-ray diffraction measurement revealed that the addition of ESO-g-PHS did not change the crystal structure of PP. Moreover, there was a slight improvement in thermal properties for PP composites with the addition of ESO-g-PHS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Santos RPO, Rodrigues BVM, Ramires EC et al (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crops Prod 72(2015):69–76CrossRef Santos RPO, Rodrigues BVM, Ramires EC et al (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crops Prod 72(2015):69–76CrossRef
2.
Zurück zum Zitat Bowyer WH, Bader MG (1972) Reinforcement of thermoplastics using carbon fibres. Faraday Spec Discuss Chem Soc 2:165–173CrossRef Bowyer WH, Bader MG (1972) Reinforcement of thermoplastics using carbon fibres. Faraday Spec Discuss Chem Soc 2:165–173CrossRef
3.
Zurück zum Zitat Chattopadhyay SK, Singh S, Pramanik N et al (2011) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121(4):2226–2232CrossRef Chattopadhyay SK, Singh S, Pramanik N et al (2011) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121(4):2226–2232CrossRef
4.
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
5.
Zurück zum Zitat Lu SR, Ling RH, Luo CX et al (2013) Sisal fibre/polypropylene composites modified with carboxyl terminated hyperbranched polymer. Plast Rubber Compos 42(9):361–366CrossRef Lu SR, Ling RH, Luo CX et al (2013) Sisal fibre/polypropylene composites modified with carboxyl terminated hyperbranched polymer. Plast Rubber Compos 42(9):361–366CrossRef
6.
Zurück zum Zitat Maurya HO, Gupta MK, Srivastava RK et al (2015) Study on the mechanical properties of epoxy composite using short sisal fibre. Mater Today: Proc 2(4–5):1347–1355CrossRef Maurya HO, Gupta MK, Srivastava RK et al (2015) Study on the mechanical properties of epoxy composite using short sisal fibre. Mater Today: Proc 2(4–5):1347–1355CrossRef
7.
Zurück zum Zitat Sood M, Dharmpal D, Gupta VK (2015) Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater Today: Proc 2(4–5):3149–3155CrossRef Sood M, Dharmpal D, Gupta VK (2015) Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater Today: Proc 2(4–5):3149–3155CrossRef
8.
Zurück zum Zitat Zhang H (2014) Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Mater Des 59:130–134CrossRef Zhang H (2014) Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Mater Des 59:130–134CrossRef
9.
Zurück zum Zitat Rezaei Abadchi M, Jalali-Arani A (2015) Crystallization and melting behavior of polypropylene (PP) in (vulcanized nanoscale polybutadiene rubber powder/PP) polymer-nanocomposites. Thermochim Acta 617:120–128CrossRef Rezaei Abadchi M, Jalali-Arani A (2015) Crystallization and melting behavior of polypropylene (PP) in (vulcanized nanoscale polybutadiene rubber powder/PP) polymer-nanocomposites. Thermochim Acta 617:120–128CrossRef
10.
Zurück zum Zitat Liu SP, Ying JR, Zhou XP et al (2009) Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA. Compos Sci Technol 69(11–12):1873–1879CrossRef Liu SP, Ying JR, Zhou XP et al (2009) Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA. Compos Sci Technol 69(11–12):1873–1879CrossRef
11.
Zurück zum Zitat Al-Saleh MH (2015) Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater Des 85:76–81 Al-Saleh MH (2015) Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater Des 85:76–81
12.
Zurück zum Zitat Cui J, Mei C, Jia C et al (2010) Acrylamide–formaldehyde–urea copolymer as a novel compatibilizer for high density polyethylene/plant fiber composite. Polym Bull 67(3):375–382CrossRef Cui J, Mei C, Jia C et al (2010) Acrylamide–formaldehyde–urea copolymer as a novel compatibilizer for high density polyethylene/plant fiber composite. Polym Bull 67(3):375–382CrossRef
13.
Zurück zum Zitat Ichazo MN, Abano C, Gonzalez J et al (2001) polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214CrossRef Ichazo MN, Abano C, Gonzalez J et al (2001) polypropylene/wood flour composites: treatments and properties. Compos Struct 54:207–214CrossRef
14.
Zurück zum Zitat Zahari WZW, Badri RNRL, Ardyananta H et al (2015) Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment. Proc Manuf 2:573–578 Zahari WZW, Badri RNRL, Ardyananta H et al (2015) Mechanical properties and water absorption behavior of polypropylene/ijuk fiber composite by using silane treatment. Proc Manuf 2:573–578
15.
Zurück zum Zitat Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos A Appl Sci Manuf 40(6–7):791–799CrossRef Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos A Appl Sci Manuf 40(6–7):791–799CrossRef
16.
Zurück zum Zitat Zou J, Chen X, Shu Y et al (2010) Synthesis, characterization of star-shaped copolymers of l-lactide and epoxidized soybean oil. Polym Bull 66(3):315–326CrossRef Zou J, Chen X, Shu Y et al (2010) Synthesis, characterization of star-shaped copolymers of l-lactide and epoxidized soybean oil. Polym Bull 66(3):315–326CrossRef
17.
Zurück zum Zitat Jalilian S, Yeganeh H (2015) Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil. Polym Bull 72(6):1379–1392CrossRef Jalilian S, Yeganeh H (2015) Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil. Polym Bull 72(6):1379–1392CrossRef
18.
Zurück zum Zitat Cheenkachorn K (2013) A study of wear properties of different soybean oils. Energy Proc 42:633–639CrossRef Cheenkachorn K (2013) A study of wear properties of different soybean oils. Energy Proc 42:633–639CrossRef
19.
Zurück zum Zitat Yang D, Peng X, Zhong L et al (2014) “Green” films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr Polym 103(2014):198–206CrossRef Yang D, Peng X, Zhong L et al (2014) “Green” films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr Polym 103(2014):198–206CrossRef
20.
Zurück zum Zitat Xiong Z, Yang Y, Feng J et al (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92(1):810–816CrossRef Xiong Z, Yang Y, Feng J et al (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92(1):810–816CrossRef
21.
Zurück zum Zitat Sahoo SK, Mohanty S, Nayak SK (2015) Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite. Prog Org Coat 88:263–271CrossRef Sahoo SK, Mohanty S, Nayak SK (2015) Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite. Prog Org Coat 88:263–271CrossRef
22.
Zurück zum Zitat Lu Y, Hu Y, Chung TCM (2005) Syntheses of diblock copolymers polyolefin-b-poly(ε-caprolactone) and their applications as the polymeric compatilizer. Polymer 46(23):10585–10591CrossRef Lu Y, Hu Y, Chung TCM (2005) Syntheses of diblock copolymers polyolefin-b-poly(ε-caprolactone) and their applications as the polymeric compatilizer. Polymer 46(23):10585–10591CrossRef
23.
Zurück zum Zitat Morán JI, Alvarez VA, Cyras VP et al (2007) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef Morán JI, Alvarez VA, Cyras VP et al (2007) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef
24.
Zurück zum Zitat Saw LT, Uy Lan DN, Rahim NAA et al (2015) Processing degradation of polypropylene-ethylene copolymer-kaolin composites by a twin-screw extruder. Polym Degrad Stab 111(2015):32–37CrossRef Saw LT, Uy Lan DN, Rahim NAA et al (2015) Processing degradation of polypropylene-ethylene copolymer-kaolin composites by a twin-screw extruder. Polym Degrad Stab 111(2015):32–37CrossRef
25.
Zurück zum Zitat Huang X, Weiss RG (2007) Molecular organogels of the sodium salt of (R)-12-hydroxystearic acid and their templated syntheses of inorganic oxides. Tetrahedron 63(31):7375–7385CrossRef Huang X, Weiss RG (2007) Molecular organogels of the sodium salt of (R)-12-hydroxystearic acid and their templated syntheses of inorganic oxides. Tetrahedron 63(31):7375–7385CrossRef
26.
Zurück zum Zitat Li Y, Sun XS (2015) Polyols from epoxidized soybean oil and alpha hydroxyl acids and their adhesion properties from UV polymerization. Int J Adhes Adhes 63:1–8CrossRef Li Y, Sun XS (2015) Polyols from epoxidized soybean oil and alpha hydroxyl acids and their adhesion properties from UV polymerization. Int J Adhes Adhes 63:1–8CrossRef
27.
Zurück zum Zitat Liu Z, Biswas A (2013) Fluoroantimonic acid hexahydrate (HSbF6·6H2O) catalysis: the ring-opening polymerization of epoxidized soybean oil. Appl Catal A 453(2013):370–375CrossRef Liu Z, Biswas A (2013) Fluoroantimonic acid hexahydrate (HSbF6·6H2O) catalysis: the ring-opening polymerization of epoxidized soybean oil. Appl Catal A 453(2013):370–375CrossRef
28.
Zurück zum Zitat Jain AA, Mehra A, Ranade VV (2015) Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel 165:490–498CrossRef Jain AA, Mehra A, Ranade VV (2015) Processing of TGA data: analysis of isoconversional and model fitting methods. Fuel 165:490–498CrossRef
29.
Zurück zum Zitat Chen J, Zhao X, Zhang L et al (2015) Reversible addition-fragmentation chain transfer polymerization of vinyl acetate under high pressure. J Polym Sci Part A: Polym Chem 53(12):1430–1436CrossRef Chen J, Zhao X, Zhang L et al (2015) Reversible addition-fragmentation chain transfer polymerization of vinyl acetate under high pressure. J Polym Sci Part A: Polym Chem 53(12):1430–1436CrossRef
30.
Zurück zum Zitat Schawe JEK, Vermeulen PA, van Drongelen M (2015) Two processes of α-phase formation in polypropylene at high supercooling. Thermochim Acta 616:87–91CrossRef Schawe JEK, Vermeulen PA, van Drongelen M (2015) Two processes of α-phase formation in polypropylene at high supercooling. Thermochim Acta 616:87–91CrossRef
31.
Zurück zum Zitat Rogers MA, Wright AJ, Marangoni AG (2008) Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Res Int 41(10):1026–1034CrossRef Rogers MA, Wright AJ, Marangoni AG (2008) Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Res Int 41(10):1026–1034CrossRef
32.
Zurück zum Zitat Lu S, Li S, Yu J et al (2013) The effect of hyperbranched polymer lubricant as a compatibilizer on the structure and properties of lignin/polypropylene composites. Wood Mater Sci Eng 8(3):159–165CrossRef Lu S, Li S, Yu J et al (2013) The effect of hyperbranched polymer lubricant as a compatibilizer on the structure and properties of lignin/polypropylene composites. Wood Mater Sci Eng 8(3):159–165CrossRef
33.
Zurück zum Zitat Nourbakhsh A, Ashori A, Ziaei Tabari H et al (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700CrossRef Nourbakhsh A, Ashori A, Ziaei Tabari H et al (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700CrossRef
34.
Zurück zum Zitat Asha Krishnan K, Jose C, RohithK R et al (2015) Sisal nanofibril reinforced polypropylene/polystyrene blends: morphology, mechanical, dynamic mechanical and water transmission studies. Ind Crops Prod 71:173–184CrossRef Asha Krishnan K, Jose C, RohithK R et al (2015) Sisal nanofibril reinforced polypropylene/polystyrene blends: morphology, mechanical, dynamic mechanical and water transmission studies. Ind Crops Prod 71:173–184CrossRef
35.
Zurück zum Zitat Hasan MS, Ahmed I, Parsons AJ et al (2013) The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. J Mech Behav Biomed Mater 28:1–14CrossRef Hasan MS, Ahmed I, Parsons AJ et al (2013) The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites. J Mech Behav Biomed Mater 28:1–14CrossRef
36.
Zurück zum Zitat Ye J, Ye Z, Zhu S (2008) Synthesis and characterization of hyperbranched polyethylenes containing cross-linking structures by chain walking copolymerization of ethylene with diacrylate comonomer. Polymer 49(16):3382–3392CrossRef Ye J, Ye Z, Zhu S (2008) Synthesis and characterization of hyperbranched polyethylenes containing cross-linking structures by chain walking copolymerization of ethylene with diacrylate comonomer. Polymer 49(16):3382–3392CrossRef
37.
Zurück zum Zitat Hsiao MC, Liao SH, Lin YF et al (2011) Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale 3(4):1516–1522CrossRef Hsiao MC, Liao SH, Lin YF et al (2011) Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite. Nanoscale 3(4):1516–1522CrossRef
38.
Zurück zum Zitat Liu Z, Erhan SZ, Xu J (2005) Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46(23):10119–10127CrossRef Liu Z, Erhan SZ, Xu J (2005) Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46(23):10119–10127CrossRef
39.
Zurück zum Zitat Salleh FM, Hassan A, Yahya R et al (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B Eng 58(2014):259–266CrossRef Salleh FM, Hassan A, Yahya R et al (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B Eng 58(2014):259–266CrossRef
40.
Zurück zum Zitat Li H, Wang W, Li C et al (2015) Synthesis and characterization of brush-like multigraft copolymers PnBA-g-PMMA by a combination of emulsion AGET ATRP and emulsion polymerization. J Colloid Interface Sci 453:226–236CrossRef Li H, Wang W, Li C et al (2015) Synthesis and characterization of brush-like multigraft copolymers PnBA-g-PMMA by a combination of emulsion AGET ATRP and emulsion polymerization. J Colloid Interface Sci 453:226–236CrossRef
41.
Zurück zum Zitat Nakatani H, Motokucho S, Miyazaki K (2015) Preparation of novel polypropylene oligomer compatibilizer for polypropylene/microfibrous cellulose composite and its addition effect. Polym Bull 72(10):2633–2647CrossRef Nakatani H, Motokucho S, Miyazaki K (2015) Preparation of novel polypropylene oligomer compatibilizer for polypropylene/microfibrous cellulose composite and its addition effect. Polym Bull 72(10):2633–2647CrossRef
42.
Zurück zum Zitat Kousksou T, Jamil A, Zeraouli Y (2012) Enthalpy and apparent specific heat capacity of the binary solution during the melting process: DSC modeling. Thermochim Acta 541(2012):31–41CrossRef Kousksou T, Jamil A, Zeraouli Y (2012) Enthalpy and apparent specific heat capacity of the binary solution during the melting process: DSC modeling. Thermochim Acta 541(2012):31–41CrossRef
43.
Zurück zum Zitat Song F, Wang Q, Wang T (2016) The effects of crystallinity on the mechanical properties and the limiting PV (pressure × velocity) value of PTFE. Tribol Int 93(2016):1–10CrossRef Song F, Wang Q, Wang T (2016) The effects of crystallinity on the mechanical properties and the limiting PV (pressure × velocity) value of PTFE. Tribol Int 93(2016):1–10CrossRef
44.
Zurück zum Zitat Cai Q, Wan Y, Bei J et al (2003) Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials 24(20):3555–3562CrossRef Cai Q, Wan Y, Bei J et al (2003) Synthesis and characterization of biodegradable polylactide-grafted dextran and its application as compatilizer. Biomaterials 24(20):3555–3562CrossRef
Metadaten
Titel
Effect of epoxidized soybean oil grafted poly(12-hydroxy stearate) on mechanical and thermal properties of microcrystalline cellulose fibers/polypropylene composites
verfasst von
Jin Yang
Shaorong Lu
Lulu Pan
Qiyun Luo
Laifu Song
Lingyan Wu
Jinhong Yu
Publikationsdatum
12.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 4/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1753-9

Weitere Artikel der Ausgabe 4/2017

Polymer Bulletin 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.