Skip to main content
Erschienen in: Technical Physics 10/2023

29.12.2023

Effect of Grain Size and Temperature on Scalar Dislocation Density and Curvature–Torsion of the Crystal Lattice in Copper–Manganese Alloys during Plastic Deformation

verfasst von: L. I. Trishkina, A. A. Klopotov, T. V. Cherkasova, V. I. Borodin, A. I. Potekaev, M. D. Starostenkov

Erschienen in: Technical Physics | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dependences of the flow stress at different temperatures of homogeneous solid solutions based on Cu–Mn alloys with an fcc crystal lattice are obtained depending on the composition. It has been established that the difference between the flow-stress curves at different temperatures increases with an increase in the Mn content in the alloy. The results of the study of the evolution of the dislocation structure in Cu–Mn alloys with manganese content of 1, 2, 4, and 6 at % in the grain size range of 20–240 µm at deformation temperatures from 293 to 673 К by the methods of diffraction electron microscopy are presented. The dependences of the scalar dislocation density on the grain size and test temperature in Cu–Mn alloys have been established. It has been established that, with an increase in the degree of deformation, a significant increase in the average scalar density of dislocations occurs. At a fixed degree of deformation in all the alloys studied, an increase in the deformation temperature leads to a decrease in the dislocation density. In the grain size range from 10 to 100 μm, at all test temperatures, an intense decrease in the average scalar dislocation density is observed. For grain sizes above 100 μm, this value of the dislocation density does not change. The numerical values of the curvature–torsion of the crystal lattice were measured from the micrographs obtained in an electron microscope along the width of the bending extinction deformation contours. It has been established that the magnitude of the curvature–torsion of the crystal lattice increases with deformation in a nonlinear manner in all the investigated alloys. The value of curvature–torsion of the crystal lattice at a fixed degree of deformation in alloys with a grain size of ~10 μm is greater than in alloys with higher grain sizes of ~200 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat E. V. Konovalova, O. B. Perevalova, N. A. Koneva, K. V. Ivanov, and E. V. Kozlov, Fundam. Probl. Sovrem. Materialoved. 10 (2), 272 (2013). E. V. Konovalova, O. B. Perevalova, N. A. Koneva, K. V. Ivanov, and E. V. Kozlov, Fundam. Probl. Sovrem. Materialoved. 10 (2), 272 (2013).
7.
Zurück zum Zitat State Diagrams of Binary Metal Systems: Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2 [in Russian]. State Diagrams of Binary Metal Systems: Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2 [in Russian].
11.
12.
Zurück zum Zitat M. A. Shtremel’, Strength of Alloys, in 2 vols. (Mosk. Inst. Stali i Splavov, Moscow, 1999) [in Russian]. M. A. Shtremel’, Strength of Alloys, in 2 vols. (Mosk. Inst. Stali i Splavov, Moscow, 1999) [in Russian].
14.
Zurück zum Zitat A. V. Markidonov, M. D. Starostenkov, A. A. Barchuk, and N. N. Medvedev, Fundam. Probl. Sovrem. Materialoved. 8 (3), 83 (2011). A. V. Markidonov, M. D. Starostenkov, A. A. Barchuk, and N. N. Medvedev, Fundam. Probl. Sovrem. Materialoved. 8 (3), 83 (2011).
15.
Zurück zum Zitat A. V. Markidonov, M. D. Starostenkov, A. A. Barchuk, and S. V. Bovkush, Fundam. Probl. Sovrem. Materialoved. 8 (4), 9 (2011). A. V. Markidonov, M. D. Starostenkov, A. A. Barchuk, and S. V. Bovkush, Fundam. Probl. Sovrem. Materialoved. 8 (4), 9 (2011).
16.
Zurück zum Zitat M. D. Starostenkov, P. V. Zakharov, and N. N. Medvedev, Pis’ma Mater. 1, 238 (2011). M. D. Starostenkov, P. V. Zakharov, and N. N. Medvedev, Pis’ma Mater. 1, 238 (2011).
17.
Zurück zum Zitat N. A. Koneva, S. F. Kiseleva, N. A. Popova, and E. V. Kozlov, Fundam. Probl. Sovrem. Materialoved. 8 (3), 34 (2011). N. A. Koneva, S. F. Kiseleva, N. A. Popova, and E. V. Kozlov, Fundam. Probl. Sovrem. Materialoved. 8 (3), 34 (2011).
18.
Zurück zum Zitat N. A. Koneva, S. F. Kiseleva, N. A. Popova, and E. V. Kozlov, Izv. Ross. Akad. Nauk. Ser. Fiz. 78 (4), 406 (2014). N. A. Koneva, S. F. Kiseleva, N. A. Popova, and E. V. Kozlov, Izv. Ross. Akad. Nauk. Ser. Fiz. 78 (4), 406 (2014).
23.
Zurück zum Zitat N. A. Koneva, L. I. Trishkina, D. V. Lychagin, and E. V. Kozlov, in Proc. Int. Conf. “New Methods in Physics and Mechanics of Deformable Solid State,” Ed. by V. E. Panin (Tomsk State Univ., Tomsk, 1990), Part 1, pp. 83 [in Russian]. N. A. Koneva, L. I. Trishkina, D. V. Lychagin, and E. V. Kozlov, in Proc. Int. Conf.New Methods in Physics and Mechanics of Deformable Solid State,” Ed. by V. E. Panin (Tomsk State Univ., Tomsk, 1990), Part 1, pp. 83 [in Russian].
25.
Zurück zum Zitat N. A. Popova, A. A. Klopotov, E. L. Nikonenko, L. I. Tishkina, T. V. Cherkasova, G. G. Volokitin, O. M. Loskutov, V. I. Borodin, and A. I. Potekaev, Fundam. Probl. Sovrem. Materialoved. 19 (4), 423 (2022). N. A. Popova, A. A. Klopotov, E. L. Nikonenko, L. I. Tishkina, T. V. Cherkasova, G. G. Volokitin, O. M. Loskutov, V. I. Borodin, and A. I. Potekaev, Fundam. Probl. Sovrem. Materialoved. 19 (4), 423 (2022).
26.
Zurück zum Zitat N. A. Koneva and E. V. Kozlov, Physical nature of plastic deformation stages, in Structural Levels of Plastic Deformation and Fracture, Ed. by V. E. Panin (Nauka, Novosibirsk, 1990), p. 123 [in Russian]. N. A. Koneva and E. V. Kozlov, Physical nature of plastic deformation stages, in Structural Levels of Plastic Deformation and Fracture, Ed. by V. E. Panin (Nauka, Novosibirsk, 1990), p. 123 [in Russian].
27.
Zurück zum Zitat N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure-Phase Transformations in Weakly Stable States of Metallic Systems under Thermal Force Action (NTL, Tomsk, 2015) [in Russian]. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structure-Phase Transformations in Weakly Stable States of Metallic Systems under Thermal Force Action (NTL, Tomsk, 2015) [in Russian].
28.
Zurück zum Zitat R.W.K. Honeycomb, The Plastic Deformation of Metals (Edward Arnold, London, 1968). R.W.K. Honeycomb, The Plastic Deformation of Metals (Edward Arnold, London, 1968).
29.
Zurück zum Zitat L. I. Tushinskii, Structural Theory of the Constructive Strength of Materials (Novosibirsk State Tech. Univ., Novosibirsk, 2004) [in Russian]. L. I. Tushinskii, Structural Theory of the Constructive Strength of Materials (Novosibirsk State Tech. Univ., Novosibirsk, 2004) [in Russian].
30.
Zurück zum Zitat Materials Science and Technology: A Comprehensive Treatment, Vol. 6: Plastic Deformation and Fracture of Materials, Ed. by H. Mughrabi (VCH, Weinheim, 1992). Materials Science and Technology: A Comprehensive Treatment, Vol. 6: Plastic Deformation and Fracture of Materials, Ed. by H. Mughrabi (VCH, Weinheim, 1992).
31.
Zurück zum Zitat N. A. Koneva, D. V. Lychagin, S. P. Zhukovskii, and E. V. Kozlov, Fiz. Met. Metalloved., No. 1, 171 (1985). N. A. Koneva, D. V. Lychagin, S. P. Zhukovskii, and E. V. Kozlov, Fiz. Met. Metalloved., No. 1, 171 (1985).
33.
Zurück zum Zitat N. A. Koneva, T. V. Cherkasova, L. I. Trishkina, N. A. Popova, V. E. Gromova, and K. V. Aksenova, Dislocation Structure and Dislocation Substructures. Electron-Microscopic Methods of Measuring Their Parameters (Sib. State Ind. Univ., Novokuznetsk, 2019) [in Russian]. N. A. Koneva, T. V. Cherkasova, L. I. Trishkina, N. A. Popova, V. E. Gromova, and K. V. Aksenova, Dislocation Structure and Dislocation Substructures. Electron-Microscopic Methods of Measuring Their Parameters (Sib. State Ind. Univ., Novokuznetsk, 2019) [in Russian].
34.
Zurück zum Zitat N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, Internal stress fields, lattice bending-torsion and plastic deformation stages. Measurement methods and results, in Proc. Int. Conf. “New Methods in Physics and Mechanics of Deformable Solid State,” Ed. by V. E. Panin (Tomsk State Univ., Tomsk, 1990), Part 1, p. 83. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000121182. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, Internal stress fields, lattice bending-torsion and plastic deformation stages. Measurement methods and results, in Proc. Int. Conf.New Methods in Physics and Mechanics of Deformable Solid State,” Ed. by V. E. Panin (Tomsk State Univ., Tomsk, 1990), Part 1, p. 83. http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000121182.
35.
Zurück zum Zitat E. V. Kozlov, N. A. Koneva, and L. I. Trishkina, Fundam. Probl. Sovrem. Materialoved. 6 (1), 7 (2009). E. V. Kozlov, N. A. Koneva, and L. I. Trishkina, Fundam. Probl. Sovrem. Materialoved. 6 (1), 7 (2009).
36.
Zurück zum Zitat E. V. Kozlov, N. A. Koneva, and N. A. Popova, Fiz. Mezomekh. 12 (4), 93 (2009). E. V. Kozlov, N. A. Koneva, and N. A. Popova, Fiz. Mezomekh. 12 (4), 93 (2009).
38.
Zurück zum Zitat E. V. Kozlov, N. A. Popova, Yu. F. Ivanov, et al., Ann. Chim. Fr. 21, 427 (1996). E. V. Kozlov, N. A. Popova, Yu. F. Ivanov, et al., Ann. Chim. Fr. 21, 427 (1996).
Metadaten
Titel
Effect of Grain Size and Temperature on Scalar Dislocation Density and Curvature–Torsion of the Crystal Lattice in Copper–Manganese Alloys during Plastic Deformation
verfasst von
L. I. Trishkina
A. A. Klopotov
T. V. Cherkasova
V. I. Borodin
A. I. Potekaev
M. D. Starostenkov
Publikationsdatum
29.12.2023
Verlag
Pleiades Publishing
Erschienen in
Technical Physics / Ausgabe 10/2023
Print ISSN: 1063-7842
Elektronische ISSN: 1090-6525
DOI
https://doi.org/10.1134/S1063784223700093

Weitere Artikel der Ausgabe 10/2023

Technical Physics 10/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.