Skip to main content
Erschienen in: Journal of Materials Science 7/2014

01.04.2014

Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites

verfasst von: Jiamei Hu, Xin Jia, Cuihua Li, Zhiyuan Ma, Guoxiang Zhang, Wenbo Sheng, Xiulan Zhang, Zhong Wei

Erschienen in: Journal of Materials Science | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, graphene oxide (GO) and poly(methyl methacrylate) (PMMA) grafted GO reduced by dopamine (rGO@PDA-g-PMMA) were employed to determine the key factor responsible for the improved mechanical properties of poly(vinyl chloride) (PVC). Dopamine was utilized to reduce GO and simultaneous coating of polydopamine (PDA) on the GO surface. rGO@PDA-g-PMMA was prepared by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization techniques. The resulting derivatives were characterized by thermogravimetric analysis, Fourier transforms infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. PVC nanocomposites containing GO derivatives were prepared by solution blend and the nanocomposite films were obtained using a casting method. The mechanical properties of the nanocomposites were studied using both dynamic mechanical thermal analysis and tensile testing. The results revealed that the vital components responsible for the improved mechanical properties and thermal stability of rGO@PDA-g-PMMA/PVC nanocomposites compared to pure PVC are the interfacial interactions between the GO derivatives and the PVC matrix.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salavagione HJ, Martínez G (2011) Importance of covalent linkages in the preparation of effective reduced graphene oxide-poly(vinyl chloride) nanocomposites. Macromolecules 44:2685–2692CrossRef Salavagione HJ, Martínez G (2011) Importance of covalent linkages in the preparation of effective reduced graphene oxide-poly(vinyl chloride) nanocomposites. Macromolecules 44:2685–2692CrossRef
2.
Zurück zum Zitat Awad WH, Beyer G, Benderly D et al (2009) Material properties of nanoclay PVC composites. Polymer 50:1857–1867CrossRef Awad WH, Beyer G, Benderly D et al (2009) Material properties of nanoclay PVC composites. Polymer 50:1857–1867CrossRef
3.
Zurück zum Zitat Liu C (2011) Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603CrossRef Liu C (2011) Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603CrossRef
4.
Zurück zum Zitat Vadukumpully S, Paul J, Mahanta N et al (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198–205CrossRef Vadukumpully S, Paul J, Mahanta N et al (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198–205CrossRef
5.
Zurück zum Zitat Liu J, Chen G, Yang J (2008) Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability. Polymer 49:3923–3927CrossRef Liu J, Chen G, Yang J (2008) Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability. Polymer 49:3923–3927CrossRef
6.
Zurück zum Zitat Hayashida K, Tanaka H, Watanabe O (2009) Miscible blends of poly(butyl methacrylate) densely grafted on fumed silica with poly(vinyl chloride). Polymer 50:6228–6234CrossRef Hayashida K, Tanaka H, Watanabe O (2009) Miscible blends of poly(butyl methacrylate) densely grafted on fumed silica with poly(vinyl chloride). Polymer 50:6228–6234CrossRef
7.
Zurück zum Zitat Sterzyński T, Tomaszewska J, Piszczek K et al (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70:966–969CrossRef Sterzyński T, Tomaszewska J, Piszczek K et al (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70:966–969CrossRef
8.
Zurück zum Zitat Salavagione HJ, Martínez G, Ballesteros C (2010) Functionalization of multi-walled carbon nanotubes by stereoselective nucleophilic substitution on PVC. Macromolecules 43:9754–9760CrossRef Salavagione HJ, Martínez G, Ballesteros C (2010) Functionalization of multi-walled carbon nanotubes by stereoselective nucleophilic substitution on PVC. Macromolecules 43:9754–9760CrossRef
9.
Zurück zum Zitat Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mater 8:139–143CrossRef Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nat Mater 8:139–143CrossRef
10.
Zurück zum Zitat Wang Y, Shi Z, Fang J et al (2011) Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. J Mater Chem 21:505–512CrossRef Wang Y, Shi Z, Fang J et al (2011) Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. J Mater Chem 21:505–512CrossRef
11.
Zurück zum Zitat Rao CNR, Biswas K, Subrahmanyam KS (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457–2469CrossRef Rao CNR, Biswas K, Subrahmanyam KS (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457–2469CrossRef
12.
Zurück zum Zitat Ding N, Chen XF, Wu CML et al (2012) Computational investigation on the effect of graphene oxide sheets as nanofillers in poly(vinyl alcohol)/graphene oxide composites. J Phys Chem 116:22532–22538 Ding N, Chen XF, Wu CML et al (2012) Computational investigation on the effect of graphene oxide sheets as nanofillers in poly(vinyl alcohol)/graphene oxide composites. J Phys Chem 116:22532–22538
14.
Zurück zum Zitat Young RJ, Kinloch IA, Gong L et al (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476CrossRef Young RJ, Kinloch IA, Gong L et al (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476CrossRef
15.
Zurück zum Zitat Xu K, Chen G, Qiu D (2013) Convenient construction of poly (3,4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem 1:12395–12399 Xu K, Chen G, Qiu D (2013) Convenient construction of poly (3,4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem 1:12395–12399
16.
Zurück zum Zitat Fang M, Wang K, Lu H et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef Fang M, Wang K, Lu H et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105CrossRef
17.
Zurück zum Zitat Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRef Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRef
18.
Zurück zum Zitat Wang J, Jia H, Tang Y et al (2012) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48(4):1571–1577. doi:10.1007/s10853-012-6913-1 CrossRef Wang J, Jia H, Tang Y et al (2012) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48(4):1571–1577. doi:10.​1007/​s10853-012-6913-1 CrossRef
19.
Zurück zum Zitat Ma WS, Li J, Zhao XS (2013) Improving the thermal and mechanical properties of silicone polymer by incorporating functionalized graphene oxide. J Mater Sci 48(15):5287–5294. doi:10.1007/s10853-013-7320-y CrossRef Ma WS, Li J, Zhao XS (2013) Improving the thermal and mechanical properties of silicone polymer by incorporating functionalized graphene oxide. J Mater Sci 48(15):5287–5294. doi:10.​1007/​s10853-013-7320-y CrossRef
20.
Zurück zum Zitat Alzari V, Nuvoli D, Sanna R et al (2011) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549CrossRef Alzari V, Nuvoli D, Sanna R et al (2011) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549CrossRef
21.
Zurück zum Zitat Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288CrossRef
22.
Zurück zum Zitat Chang L, Wu S, Chen S et al (2011) Preparation of graphene oxide-molecularly imprinted polymer composites via atom transfer radical polymerization. J Mater Sci 46:2024–2029. doi:10.1007/s10853-010-5033-z CrossRef Chang L, Wu S, Chen S et al (2011) Preparation of graphene oxide-molecularly imprinted polymer composites via atom transfer radical polymerization. J Mater Sci 46:2024–2029. doi:10.​1007/​s10853-010-5033-z CrossRef
23.
Zurück zum Zitat Yang L, Yee WA, Phua SL et al (2012) A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. RSC Adv 2:2208–2210CrossRef Yang L, Yee WA, Phua SL et al (2012) A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. RSC Adv 2:2208–2210CrossRef
24.
Zurück zum Zitat Zhu A, Cai A, Zhou W et al (2008) Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites. Appl Surf Sci 254:3745–3752CrossRef Zhu A, Cai A, Zhou W et al (2008) Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites. Appl Surf Sci 254:3745–3752CrossRef
25.
Zurück zum Zitat Yin B, Hakkarainen M (2011) Core-shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J Mater Chem 21:8670–8677CrossRef Yin B, Hakkarainen M (2011) Core-shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness. J Mater Chem 21:8670–8677CrossRef
26.
Zurück zum Zitat Zhao X, Zhang Q, Chen D et al (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef Zhao X, Zhang Q, Chen D et al (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRef
27.
Zurück zum Zitat Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRef
28.
Zurück zum Zitat Song C, Wu D, Zhang F et al (2012) Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem Commun 48:2119–2121CrossRef Song C, Wu D, Zhang F et al (2012) Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem Commun 48:2119–2121CrossRef
30.
Zurück zum Zitat Rana S, Cho JW, Tan LP (2013) Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv 3:13796–13803CrossRef Rana S, Cho JW, Tan LP (2013) Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv 3:13796–13803CrossRef
31.
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRef
32.
Zurück zum Zitat Zhang C, Huang S, Tjiu WW (2012) Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly (vinyl alcohol) composites. J Mater Chem 22:2427–2434CrossRef Zhang C, Huang S, Tjiu WW (2012) Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multi-walled carbon nanotubes and their poly (vinyl alcohol) composites. J Mater Chem 22:2427–2434CrossRef
33.
Zurück zum Zitat Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
34.
Zurück zum Zitat Phua SL, Yang L, Toh CL et al (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578CrossRef Phua SL, Yang L, Toh CL et al (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578CrossRef
35.
Zurück zum Zitat Hu H, Yu B, Ye Q et al (2010) Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon 48:2347–2353CrossRef Hu H, Yu B, Ye Q et al (2010) Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon 48:2347–2353CrossRef
36.
Zurück zum Zitat Kang SM, Park S, Kim D et al (2011) Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater 21:108–112CrossRef Kang SM, Park S, Kim D et al (2011) Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater 21:108–112CrossRef
37.
Zurück zum Zitat Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103:12999–13003CrossRef Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103:12999–13003CrossRef
38.
Zurück zum Zitat Lee H, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef Lee H, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef
39.
Zurück zum Zitat Xu LQ, Yang WJ, Neoh KG et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43:8336–8339CrossRef Xu LQ, Yang WJ, Neoh KG et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43:8336–8339CrossRef
40.
Zurück zum Zitat Cheng C, Nie S, Li S et al (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem 1:265–275 Cheng C, Nie S, Li S et al (2013) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem 1:265–275
41.
Zurück zum Zitat Guo L, Liu Q, Li G et al (2012) A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 4:5864–5867CrossRef Guo L, Liu Q, Li G et al (2012) A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 4:5864–5867CrossRef
42.
Zurück zum Zitat Tian Y, Cao Y, Wang Y et al (2013) Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv Mater 25:2980–2983CrossRef Tian Y, Cao Y, Wang Y et al (2013) Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv Mater 25:2980–2983CrossRef
43.
Zurück zum Zitat Jayaraman A (2013) Polymer grafted nanoparticles: effect of chemical and physical heterogeneity in polymer grafts on particle assembly and dispersion. J Polym Sci 51:524–534CrossRef Jayaraman A (2013) Polymer grafted nanoparticles: effect of chemical and physical heterogeneity in polymer grafts on particle assembly and dispersion. J Polym Sci 51:524–534CrossRef
44.
Zurück zum Zitat Tripathi SN, Saini P, Gupta D et al (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi:10.1007/s10853-013-7420-8 CrossRef Tripathi SN, Saini P, Gupta D et al (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48:6223–6232. doi:10.​1007/​s10853-013-7420-8 CrossRef
45.
Zurück zum Zitat Blake R, Coleman JN, Byrne MT et al (2006) Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J Mater Chem 16:4206–4213CrossRef Blake R, Coleman JN, Byrne MT et al (2006) Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J Mater Chem 16:4206–4213CrossRef
46.
Zurück zum Zitat Louis Chakkalakal G, Alexandre M, Abetz C et al (2012) Surface-initiated controlled radical polymerization from silica nanoparticles with high initiator density. Macromol Chem Phys 213:513–528CrossRef Louis Chakkalakal G, Alexandre M, Abetz C et al (2012) Surface-initiated controlled radical polymerization from silica nanoparticles with high initiator density. Macromol Chem Phys 213:513–528CrossRef
47.
Zurück zum Zitat Bieligmeyer M, Taheri SM, German I et al (2012) Completely miscible polyethylene nanocomposites. J Am Chem Soc 134:18157–18160CrossRef Bieligmeyer M, Taheri SM, German I et al (2012) Completely miscible polyethylene nanocomposites. J Am Chem Soc 134:18157–18160CrossRef
48.
Zurück zum Zitat Zeng X, Yang J, Yuan W et al (2012) Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48:1674–1682CrossRef Zeng X, Yang J, Yuan W et al (2012) Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48:1674–1682CrossRef
49.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
50.
Zurück zum Zitat Li ZL, Young RJ, Kinloch IA et al (2013) Interfacial stress transfer in graphene oxide nanocomposites. ACS Appl Mater Interfaces 5:456–463CrossRef Li ZL, Young RJ, Kinloch IA et al (2013) Interfacial stress transfer in graphene oxide nanocomposites. ACS Appl Mater Interfaces 5:456–463CrossRef
51.
Zurück zum Zitat Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556CrossRef Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556CrossRef
52.
Zurück zum Zitat Rourke JP, Pandey PA, Moore JJ et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 123:3231–3235CrossRef Rourke JP, Pandey PA, Moore JJ et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 123:3231–3235CrossRef
53.
Zurück zum Zitat Thomas HR, Vallés C, Young RJ et al (2013) Identifying the fluorescence of graphene oxide. J Mater Chem 1:338–342 Thomas HR, Vallés C, Young RJ et al (2013) Identifying the fluorescence of graphene oxide. J Mater Chem 1:338–342
54.
Zurück zum Zitat Mkhabela VJ, Mishra AK, Mbianda XY (2011) Thermal and mechanical properties of phosphorylated multiwalled carbon nanotube/polyvinyl chloride composites. Carbon 49:610–617CrossRef Mkhabela VJ, Mishra AK, Mbianda XY (2011) Thermal and mechanical properties of phosphorylated multiwalled carbon nanotube/polyvinyl chloride composites. Carbon 49:610–617CrossRef
55.
Zurück zum Zitat Gu R, Xu WZ, Charpentier PA (2013) Synthesis of polydopamine-coated graphene-polymer nanocomposites via RAFT polymerization. J Polym Sci 51:3941–3949CrossRef Gu R, Xu WZ, Charpentier PA (2013) Synthesis of polydopamine-coated graphene-polymer nanocomposites via RAFT polymerization. J Polym Sci 51:3941–3949CrossRef
56.
Zurück zum Zitat Zhang B, Zhang Y, Peng C et al (2012) Preparation of polymer decorated graphene oxide by gamma-ray induced graft polymerization. Nanoscale 4:1742–1748CrossRef Zhang B, Zhang Y, Peng C et al (2012) Preparation of polymer decorated graphene oxide by gamma-ray induced graft polymerization. Nanoscale 4:1742–1748CrossRef
57.
Zurück zum Zitat Goncalves G, Marques PAAP, Barros Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef Goncalves G, Marques PAAP, Barros Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef
Metadaten
Titel
Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites
verfasst von
Jiamei Hu
Xin Jia
Cuihua Li
Zhiyuan Ma
Guoxiang Zhang
Wenbo Sheng
Xiulan Zhang
Zhong Wei
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-8006-1

Weitere Artikel der Ausgabe 7/2014

Journal of Materials Science 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.