Skip to main content
Erschienen in: Experiments in Fluids 10/2021

01.10.2021 | Research Article

Effect of leading-edge protuberances on unsteady airfoil performance at low Reynolds number

verfasst von: Tong Wang, Li-Hao Feng, Zhen-Yao Li

Erschienen in: Experiments in Fluids | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Humpback whales have higher hydrodynamic maneuverability due to the unique protuberance structures on the leading edge of their flippers. The leading-edge protuberance, therefore, is regarded as an attractive flow control method. Although some results have shown the effect of the leading-edge protuberance on a static airfoil, its effect on the aerodynamic characteristics of dynamic airfoils is still not clear. In present study, direct force measurements are conducted on dynamic NACA 0012 wings with sinusoidal leading-edge protuberances as well as a baseline configuration at a low Reynolds number of 2 × 104. Three typical motions of the wing, including pitching, plunging, and combined pitching-plunging, are employed to examine the effect of motion styles on aerodynamic characteristics of airfoils. Under the static case, it is found that leading-edge protuberances delay the stall angle of attack of airfoils by about 67%, and increase the maximum lift coefficient, which are different from previous studies of thick straight wings, such as NACA 634–021, NACA 0020, and NACA 0021. Under dynamic cases, motion styles have a significant effect on the aerodynamic characteristics of airfoils. The lift coefficient of the modified airfoil becomes larger than the baseline airfoil mainly at upstroke phases for pitching motion, downstroke phases for plunging motion, and all phases for combined pitching-plunging motion, considering positive angles of attack. Compared to the static condition, the range of angles of attack where the lift of the modified airfoil is larger than the baseline airfoil extends; however, the lift difference between both airfoils decreases. Under pitching motion, phase-locked two-dimensional particle image velocimetry is performed to investigate the mechanism behind different aerodynamic characteristics between two dynamic airfoils. It is revealed that leading-edge protuberances inhibit formation of the secondary vortex, and weaken coherency of the leading-edge vortex (LEV). The flow acceleration effect of trough planes, different evolution of the LEV and the spanwise flow on the upper surface, are the main reasons that affect the aerodynamic characteristics of the modified airfoil.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baik YS, Bernal LP, Granlund K, Ol MV (2012) Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J Fluid Mech 709:37–68MathSciNetCrossRef Baik YS, Bernal LP, Granlund K, Ol MV (2012) Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J Fluid Mech 709:37–68MathSciNetCrossRef
Zurück zum Zitat Benaissa M, Ibrahim IH, New TH, Ho WH (2017) Effect of leading edge protuberance on thrust production of a dynamically pitching airfoil. Top Probl Fluid Mech, Prague 2017:23–30 Benaissa M, Ibrahim IH, New TH, Ho WH (2017) Effect of leading edge protuberance on thrust production of a dynamically pitching airfoil. Top Probl Fluid Mech, Prague 2017:23–30
Zurück zum Zitat Benyus JM (1997) Biomimicry: innovation inspired by nature. HarperCollins, New York Benyus JM (1997) Biomimicry: innovation inspired by nature. HarperCollins, New York
Zurück zum Zitat Borg J (2012) The effect of leading edge serrations on dynamic stall. Doctor’s thesis, University of Southampton Borg J (2012) The effect of leading edge serrations on dynamic stall. Doctor’s thesis, University of Southampton
Zurück zum Zitat Carr LW (1988) Progress in analysis and prediction of dynamic stall. J Aircr 25(1):6–17CrossRef Carr LW (1988) Progress in analysis and prediction of dynamic stall. J Aircr 25(1):6–17CrossRef
Zurück zum Zitat Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50(4):1169–1182CrossRef Champagnat F, Plyer A, Le Besnerais G, Leclaire B, Davoust S, Le Sant Y (2011) Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids 50(4):1169–1182CrossRef
Zurück zum Zitat Cleaver D, Wang Z, Gursul I (2010) Vortex mode bifurcation and lift force of a plunging airfoil at low Reynolds numbers. AIAA Paper 2010–390 Cleaver D, Wang Z, Gursul I (2010) Vortex mode bifurcation and lift force of a plunging airfoil at low Reynolds numbers. AIAA Paper 2010–390
Zurück zum Zitat Custodio D, Henoch CW, Johari H (2015) Aerodynamic characteristics of finite span wings with leading-edge protuberances. AIAA J 53(7):1878–1893CrossRef Custodio D, Henoch CW, Johari H (2015) Aerodynamic characteristics of finite span wings with leading-edge protuberances. AIAA J 53(7):1878–1893CrossRef
Zurück zum Zitat Fish FE, Battle JM (1995) Hydrodynamic design of the humpback whale flipper. J Morphol 225(1):51–60CrossRef Fish FE, Battle JM (1995) Hydrodynamic design of the humpback whale flipper. J Morphol 225(1):51–60CrossRef
Zurück zum Zitat Hansen KL, Kelso RM, Dally BB (2012) Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA J 49(1):185–194CrossRef Hansen KL, Kelso RM, Dally BB (2012) Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA J 49(1):185–194CrossRef
Zurück zum Zitat Hansen KL, Rostamzadeh N, Kelso RM, Dally BB (2016) Evolution of the streamwise vortices generated between leading edge tubercles. J Fluid Mech 788:730–766CrossRef Hansen KL, Rostamzadeh N, Kelso RM, Dally BB (2016) Evolution of the streamwise vortices generated between leading edge tubercles. J Fluid Mech 788:730–766CrossRef
Zurück zum Zitat Hou YF, Li ZP (2020) Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil. Acta Aeronautica et Astronautica Sinica 41(1):123276 (in Chinese) Hou YF, Li ZP (2020) Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil. Acta Aeronautica et Astronautica Sinica 41(1):123276 (in Chinese)
Zurück zum Zitat Johari H, Henoch C, Custodio D, Levshin A (2007) Effects of leading-edge protuberances on airfoil performance. AIAA J 45(11):2634–2642CrossRef Johari H, Henoch C, Custodio D, Levshin A (2007) Effects of leading-edge protuberances on airfoil performance. AIAA J 45(11):2634–2642CrossRef
Zurück zum Zitat Lee T, Gerontakos P (2004) Investigation of flow over an oscillating airfoil. J Fluid Mech 512:313–341CrossRef Lee T, Gerontakos P (2004) Investigation of flow over an oscillating airfoil. J Fluid Mech 512:313–341CrossRef
Zurück zum Zitat Li ZY, Feng LH, Kissing J, Tropea C, Wang JJ (2020) Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J Fluid Mech 901:A17CrossRef Li ZY, Feng LH, Kissing J, Tropea C, Wang JJ (2020) Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J Fluid Mech 901:A17CrossRef
Zurück zum Zitat McCroskey WJ (1982) Unsteady airfoils. Annu Rev Fluid Mech 14:285–311CrossRef McCroskey WJ (1982) Unsteady airfoils. Annu Rev Fluid Mech 14:285–311CrossRef
Zurück zum Zitat Miklosovic DS, Murray MM, Howle LE, Fish FE (2004) Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys Fluids 16(5):L39–L42CrossRef Miklosovic DS, Murray MM, Howle LE, Fish FE (2004) Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys Fluids 16(5):L39–L42CrossRef
Zurück zum Zitat Mulleners K, Raffel M (2013) Dynamic stall development. Exp Fluids 54(2):1469CrossRef Mulleners K, Raffel M (2013) Dynamic stall development. Exp Fluids 54(2):1469CrossRef
Zurück zum Zitat New DTH, Ng BF (2020) Flow control through bio-inspired leading-edge tubercles. Springer, ChamCrossRef New DTH, Ng BF (2020) Flow control through bio-inspired leading-edge tubercles. Springer, ChamCrossRef
Zurück zum Zitat Pan C, Xue D, Xu Y, Wang JJ, Wei RJ (2015) Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci China Phys Mech Astron 58(10):1–16CrossRef Pan C, Xue D, Xu Y, Wang JJ, Wei RJ (2015) Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci China Phys Mech Astron 58(10):1–16CrossRef
Zurück zum Zitat Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry. Springer, BerlinCrossRef Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry. Springer, BerlinCrossRef
Zurück zum Zitat Rostamzadeh N, Hansen KL, Kelso RM, Dally BB (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading-edge modification. Phys Fluids 26(10):107101CrossRef Rostamzadeh N, Hansen KL, Kelso RM, Dally BB (2014) The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading-edge modification. Phys Fluids 26(10):107101CrossRef
Zurück zum Zitat Schlüter J (2009) Lift enhancement at low Reynolds numbers using pop-up feathers. AIAA Paper 2009–4195 Schlüter J (2009) Lift enhancement at low Reynolds numbers using pop-up feathers. AIAA Paper 2009–4195
Zurück zum Zitat Skillen A, Revell A, Pinelli A, Piomelli U, Favier J (2014) Flow over a wing with leading-edge undulations. AIAA J 53(2):464–472CrossRef Skillen A, Revell A, Pinelli A, Piomelli U, Favier J (2014) Flow over a wing with leading-edge undulations. AIAA J 53(2):464–472CrossRef
Zurück zum Zitat Stanway MJ (2008) Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. Doctor’s thesis, Massachusetts Institute of Technology Stanway MJ (2008) Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. Doctor’s thesis, Massachusetts Institute of Technology
Zurück zum Zitat Wang JJ, Feng LH (2019) Flow control techniques and applications. Cambridge University Press, Cambridge Wang JJ, Feng LH (2019) Flow control techniques and applications. Cambridge University Press, Cambridge
Zurück zum Zitat Wang Y, Hu W, Zhang S (2014) Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing. J Hydrodyn 26(6):912–920CrossRef Wang Y, Hu W, Zhang S (2014) Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing. J Hydrodyn 26(6):912–920CrossRef
Zurück zum Zitat Weber PW, Howle LE, Murray MM, Miklosovic DS (2011) Computational evaluation of the performance of lifting surfaces with leading-edge protuberances. J Aircr 48(2):591–600CrossRef Weber PW, Howle LE, Murray MM, Miklosovic DS (2011) Computational evaluation of the performance of lifting surfaces with leading-edge protuberances. J Aircr 48(2):591–600CrossRef
Zurück zum Zitat Wei Z, New TH, Cui YD (2015) An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number. Ocean Eng 108:336–349CrossRef Wei Z, New TH, Cui YD (2015) An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number. Ocean Eng 108:336–349CrossRef
Zurück zum Zitat Yasuda T, Fukui K, Matsuo K, Minagawa H, Kurimoto R (2019) Effect of the Reynolds number on the performance of a NACA0012 wing with leading edge protuberance at low Reynolds numbers. Flow Turbul Combust 102:435–455CrossRef Yasuda T, Fukui K, Matsuo K, Minagawa H, Kurimoto R (2019) Effect of the Reynolds number on the performance of a NACA0012 wing with leading edge protuberance at low Reynolds numbers. Flow Turbul Combust 102:435–455CrossRef
Zurück zum Zitat Zhang SD, Hu WR (2015) The numerical study of bionic wavy leading-edge wing in dynamic stall control. J Hydrodyn: A 30(1):24–32 (in Chinese) Zhang SD, Hu WR (2015) The numerical study of bionic wavy leading-edge wing in dynamic stall control. J Hydrodyn: A 30(1):24–32 (in Chinese)
Zurück zum Zitat Zhang MM, Wang GF, Xu JZ (2013) Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances. AIAA J 51(8):1960–1971CrossRef Zhang MM, Wang GF, Xu JZ (2013) Aerodynamic control of low-Reynolds-number airfoil with leading-edge protuberances. AIAA J 51(8):1960–1971CrossRef
Zurück zum Zitat Zhao M, Zhang MM, Xu JZ (2017) Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances. Eng Appl Comput Fluid Mech 11(1):193–209 Zhao M, Zhang MM, Xu JZ (2017) Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances. Eng Appl Comput Fluid Mech 11(1):193–209
Zurück zum Zitat Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396MathSciNetCrossRef
Metadaten
Titel
Effect of leading-edge protuberances on unsteady airfoil performance at low Reynolds number
verfasst von
Tong Wang
Li-Hao Feng
Zhen-Yao Li
Publikationsdatum
01.10.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 10/2021
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03310-8

Weitere Artikel der Ausgabe 10/2021

Experiments in Fluids 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.