Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2013

01.05.2013 | Symposium: Fatigue & Corrosion Damage in Metallic Materials: Fundamentals, Modeling, and Prevention

Effect of Low Temperature on Fatigue Crack Formation and Microstructure-Scale Growth from Corrosion Damage in Al-Zn-Mg-Cu

verfasst von: James T. Burns, Richard P. Gangloff

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The strong effect of cold temperature on the fatigue resistance of 7075-T651 is established. As temperature decreases from 296 K to 183 K (23 °C to −90 °C), the formation life for cracking about pit and EXCO corrosion perimeters increases, microstructure scale crack growth rates decrease in the range from 20 to 500 μm beyond the corrosion topography, and long crack growth rates similarly decline. Fatigue crack surface features correlate with reduced hydrogen embrittlement with decreasing temperature fed by localized H produced during precorrosion for pit and EXCO-proximate cracks, as well as by crack tip H produced by water vapor reaction during stressing for all crack sizes. The importance of the former H source increases with decreasing temperature for cracks sized below 200 μm. Decreasing temperature to 223 K (−50 °C) eliminates the contribution of environmental H through interaction of reduced water vapor pressure in equilibrium with ice and reduced H diffusion. The Knudsen flow model and exposure parameter, \( P_{{{\text{H}}_{2} {\text{O}}}}/f \), enables improved modeling of temperature dependent crack propagation, but does not fully describe low temperature fatigue behavior due to possible rate limitation by H diffusion. Further decreases in MSC da/dN to 183 K (−90 °C) are related to reduced mobility of the corrosion-precharged H which may associate with vacancies from dissolution. Crack formation, and growth rates correlate with either elastic stress intensity range or cyclic crack tip opening displacement, and are available to predict corrosion effects on airframe fatigue for the important low temperature regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is not possible to determine crack formation lives less than the number of baseline cycles associated with the first marker sequence [5,000 for 296 K (23 °C), and 10,000 for 223 K (−50 °C) and 183 K (−90 °C)].
 
2
62 pits were examined for the 296 K (23 °C) fatigue experiments,[52] 36 pits for the specimens stressed at 223 K (−50 °C) and 30 pits for the 183 K (−90 °C) case.
 
3
The form of the da/dN distribution in this range was not analyzed, but assuming a normal distribution 2*SD encompasses 95 pct of the data. As such, the maximum da/dN variability about the mean is taken as plus twice the standard deviation divided by the mean times 100 pct.
 
4
Assuming that φc is a proper crack tip driving force, then a reasonable continuum growth rate relationship is da/dN ~ φ~ ΔK 2/(σys*E).[76] Using σys and E values for 7075-T651 at 223 K (−50 °C) (σys = 521 MPa, E = 75,797 MPa) and 183 K (−90 °C) (σys = 526 MPa, E = 78,528 MPa),[74] the ratios of φc at 296 K (23 °C) to φc at 223 K (−50 °C) or 183 K (−90 °C) are 0.92 and 0.88, respectively.
 
5
This is a likely upper bound on D H. Reported values are highly variable, with a range from 10−11 m2/s to 10−13 m2/s attributed to surface effects, low solubility of H, and hydrogen-microstructure trapping interaction.[8690]
 
6
Braun did not report D o and E H values for 7075-T6,[85] as such the relative T dependence is estimated using 7050 data.
 
7
The ratio of H lattice concentration (C H-L) to the concentration of H-vacancy complexes (C H-V) is directly proportional to the ratio of effective H diffusivity in the presence of vacancies (D H-eff) to H diffusivity in the Al lattice slowed by reversible microstructure trapping (D H). Taking the relationship C H-V = C H-L exp[E HV/RT],[100] it is possible to estimate the vacancy-reduced diffusivity as D H-eff = D H/exp[E HV/RT].
 
8
Newman suggested that the apparent long crack threshold shown for the C-T data in Figure 3 is a crack wake plasticity/closure artifact of C-T testing[118120]; as such the pre-threshold growth regimes are often extrapolated to lower ΔK as illustrated by the dotted lines.[11,12,23,24] Complications with such extrapolation are discussed elsewhere.[23]
 
Literatur
1.
Zurück zum Zitat J. Papazian, E.L. Anagnostou, R.J. Christ, S.J. Engel, D. Fridline, D. Hoitsma, J. Madsen, J. Nardiello, J. Payne, R.P. Silberstein, G. Welsh, J.B. Whiteside: HR0011-04-C-0003, DARPA, Arlington, VA, 2009. J. Papazian, E.L. Anagnostou, R.J. Christ, S.J. Engel, D. Fridline, D. Hoitsma, J. Madsen, J. Nardiello, J. Payne, R.P. Silberstein, G. Welsh, J.B. Whiteside: HR0011-04-C-0003, DARPA, Arlington, VA, 2009.
2.
Zurück zum Zitat L. Molent: Int. J. Fatig., 2010, vol. 32, pp. 639–49. L. Molent: Int. J. Fatig., 2010, vol. 32, pp. 639–49.
3.
Zurück zum Zitat G.A. Shoales, S.A. Fawaz, and M.R. Walters: ICAF 2009 - Bridging the Gap Between Theory and Operational Practice, M. Bos, ed., Springer, Rotterdam, The Netherlands, 2009, pp. 187–207. G.A. Shoales, S.A. Fawaz, and M.R. Walters: ICAF 2009 - Bridging the Gap Between Theory and Operational Practice, M. Bos, ed., Springer, Rotterdam, The Netherlands, 2009, pp. 187–207.
4.
Zurück zum Zitat G.A. Shoales, S.R. Shah, J.W. Rausch, M.R. Walters, S.R. Arunachalam, and M.J. Hammond: USAFA-TR-2006-11, USAF, Robins AFB, GA, 2006. G.A. Shoales, S.R. Shah, J.W. Rausch, M.R. Walters, S.R. Arunachalam, and M.J. Hammond: USAFA-TR-2006-11, USAF, Robins AFB, GA, 2006.
5.
Zurück zum Zitat G.H Koch, E.L. Hagerdorn, and A.P. Berens: AFRL-VA-WP-TR-2004-3057, AFRL, Wright-Patterson AFB, OH, 1995. G.H Koch, E.L. Hagerdorn, and A.P. Berens: AFRL-VA-WP-TR-2004-3057, AFRL, Wright-Patterson AFB, OH, 1995.
6.
Zurück zum Zitat G.K. Cole, G. Clark, and P.K. Sharp: DSTO-RR-0201, DSTO, Melbourne, Australia, 1997. G.K. Cole, G. Clark, and P.K. Sharp: DSTO-RR-0201, DSTO, Melbourne, Australia, 1997.
7.
Zurück zum Zitat M.E. Hoffman and P.C. Hoffman: Int. J. Fatig., 2001, vol. 23, pp. S1–10. M.E. Hoffman and P.C. Hoffman: Int. J. Fatig., 2001, vol. 23, pp. S1–10.
8.
Zurück zum Zitat H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, and D. Raabe: Eng. Fract. Mech., 2009, vol. 76, pp. 709–14. H. Weiland, J. Nardiello, S. Zaefferer, S. Cheong, J. Papazian, and D. Raabe: Eng. Fract. Mech., 2009, vol. 76, pp. 709–14.
9.
Zurück zum Zitat J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, H. Weiland, R.J. Christ, J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, and A.R. Ingraffea: Model. Simul. Mater. Sci., 2008, vol. 16, pp. 1–28. J.E. Bozek, J.D. Hochhalter, M.G. Veilleux, M. Liu, G. Heber, S.D. Sintay, A.D. Rollett, D.J. Littlewood, A.M. Maniatty, H. Weiland, R.J. Christ, J. Payne, G. Welsh, D.G. Harlow, P.A. Wawrzynek, and A.R. Ingraffea: Model. Simul. Mater. Sci., 2008, vol. 16, pp. 1–28.
10.
Zurück zum Zitat J.M. Emery, J.D. Hochhalter, P.A. Wawrzynek, G. Heber, and A.R. Ingraffea: Eng. Fract. Mech., 2009, vol. 76, pp. 1500–30. J.M. Emery, J.D. Hochhalter, P.A. Wawrzynek, G. Heber, and A.R. Ingraffea: Eng. Fract. Mech., 2009, vol. 76, pp. 1500–30.
11.
Zurück zum Zitat S. Kim, J.T. Burns, and R.P. Gangloff: Eng. Fract. Mech., 2009, vol. 76, pp. 651–67.CrossRef S. Kim, J.T. Burns, and R.P. Gangloff: Eng. Fract. Mech., 2009, vol. 76, pp. 651–67.CrossRef
12.
Zurück zum Zitat J.T. Burns, S. Kim, and R.P. Gangloff: Corros. Sci., 2010, vol. 52, pp. 498–508. J.T. Burns, S. Kim, and R.P. Gangloff: Corros. Sci., 2010, vol. 52, pp. 498–508.
13.
Zurück zum Zitat B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, and A.J. Stonham: Fatig. Fract. Eng. M, 2005, vol. 28, pp. 795–808. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, and A.J. Stonham: Fatig. Fract. Eng. M, 2005, vol. 28, pp. 795–808.
14.
Zurück zum Zitat E.A. DeBartolo and B.M. Hillberry: Int. J. Fatig., 2001, vol. 23, pp. S79–S86.CrossRef E.A. DeBartolo and B.M. Hillberry: Int. J. Fatig., 2001, vol. 23, pp. S79–S86.CrossRef
15.
Zurück zum Zitat D.L. DuQuesnay, P.R. Underhill, and H.J. Britt: Int. J. Fatig., 2003, vol. 25, pp. 371–77. D.L. DuQuesnay, P.R. Underhill, and H.J. Britt: Int. J. Fatig., 2003, vol. 25, pp. 371–77.
16.
Zurück zum Zitat K.M. Gruenberg, B.A. Craig, B.M. Hillberry, R.J. Bucci, and A.J. Hinkle: Int. J. Fatig., 2004, vol. 26, pp. 615–27. K.M. Gruenberg, B.A. Craig, B.M. Hillberry, R.J. Bucci, and A.J. Hinkle: Int. J. Fatig., 2004, vol. 26, pp. 615–27.
17.
Zurück zum Zitat M. Liao, G. Renaud, and N.C. Bellinger: Int. J. Fatig., 2007, vol. 29, pp. 677–86. M. Liao, G. Renaud, and N.C. Bellinger: Int. J. Fatig., 2007, vol. 29, pp. 677–86.
18.
Zurück zum Zitat J.J. Medved, M. Breton, and P.E. Irving: Int. J. Fatig., 2004, vol. 26, pp. 71–80.CrossRef J.J. Medved, M. Breton, and P.E. Irving: Int. J. Fatig., 2004, vol. 26, pp. 71–80.CrossRef
19.
Zurück zum Zitat K.K. Sankaran, R. Perez, and K.V. Jata: Mater. Sci. Eng. A, 2001, vol. 297, pp. 223–29. K.K. Sankaran, R. Perez, and K.V. Jata: Mater. Sci. Eng. A, 2001, vol. 297, pp. 223–29.
20.
Zurück zum Zitat K. Sharp, T. Mills, S. Russo, G. Clark, Q. Liu, in: FAA/DoD/NASA Aging Aircraft 2000, St. Louis, MO, 2001. K. Sharp, T. Mills, S. Russo, G. Clark, Q. Liu, in: FAA/DoD/NASA Aging Aircraft 2000, St. Louis, MO, 2001.
21.
Zurück zum Zitat K. van der Walde, J.R. Brockenbrough, B.A. Craig, and B.M. Hillberry: Int. J. Fatig., 2005, vol. 27, pp. 1509–18. K. van der Walde, J.R. Brockenbrough, B.A. Craig, and B.M. Hillberry: Int. J. Fatig., 2005, vol. 27, pp. 1509–18.
22.
Zurück zum Zitat K. van der Walde and B.M. Hillberry: Int. J. Fatig., 2007, vol. 29, pp. 1269–81.CrossRef K. van der Walde and B.M. Hillberry: Int. J. Fatig., 2007, vol. 29, pp. 1269–81.CrossRef
23.
Zurück zum Zitat J.T. Burns, J.M. Larsen, and R.P. Gangloff: Int. J. Fatig., 2011, vol. 42, pp. 104–21. J.T. Burns, J.M. Larsen, and R.P. Gangloff: Int. J. Fatig., 2011, vol. 42, pp. 104–21.
24.
Zurück zum Zitat J.T. Burns and R.P. Gangloff: Proc. Eng., 2011, vol. 10, pp. 362–69. J.T. Burns and R.P. Gangloff: Proc. Eng., 2011, vol. 10, pp. 362–69.
25.
Zurück zum Zitat J.B. de Jonge and D.J. Spiekhout: in Service Fatigue Loads Monitoring, Simulation, and Analysis, ASTM STP 671, P.R. Abelkis and J.M. Potter eds., ASTM International, West Conshohocken, PA, 1979, pp. 48–66. J.B. de Jonge and D.J. Spiekhout: in Service Fatigue Loads Monitoring, Simulation, and Analysis, ASTM STP 671, P.R. Abelkis and J.M. Potter eds., ASTM International, West Conshohocken, PA, 1979, pp. 48–66.
26.
Zurück zum Zitat R.J.H. Wanhill: NRL-TP-2001-545. NRL, Amsterdam, The Netherlands, 2001. R.J.H. Wanhill: NRL-TP-2001-545. NRL, Amsterdam, The Netherlands, 2001.
27.
Zurück zum Zitat U.S. Committee on Extension of the Standard Atmosphere: NASA-TM-X-74335 (NOAA-S/T 76-1562), NASA/NOAA/USAF, Washington, D.C., 1976. U.S. Committee on Extension of the Standard Atmosphere: NASA-TM-X-74335 (NOAA-S/T 76-1562), NASA/NOAA/USAF, Washington, D.C., 1976.
28.
Zurück zum Zitat D.A. Skinn, J.P. Gallagher, A.P. Berens, P.D. Huber, and J. Smith: WL-TR-94-0452. AFRL/Materials Directorate, Wright-Patterson AFB, OH, 1994. D.A. Skinn, J.P. Gallagher, A.P. Berens, P.D. Huber, and J. Smith: WL-TR-94-0452. AFRL/Materials Directorate, Wright-Patterson AFB, OH, 1994.
29.
Zurück zum Zitat J.T. Burns, R.P. Gangloff, R.W. Bush, in: DoD/NACE Corrosion Conference, Palm Springs, CA, 2011. J.T. Burns, R.P. Gangloff, R.W. Bush, in: DoD/NACE Corrosion Conference, Palm Springs, CA, 2011.
30.
Zurück zum Zitat R.P. Gangloff: in Fatigue 2002, A. Blom, ed., EMAS, Stockholm, Sweden, 2002. R.P. Gangloff: in Fatigue 2002, A. Blom, ed., EMAS, Stockholm, Sweden, 2002.
31.
Zurück zum Zitat J. Petit, G. Henaff, and C. Sarrazin-Baudoux: in Comprehensive Structural Integrity: Environmentally Assisted Fracture, J. Petit and P. Scott eds., Elsevier, New York, NY, 2003, pp. 962–70. J. Petit, G. Henaff, and C. Sarrazin-Baudoux: in Comprehensive Structural Integrity: Environmentally Assisted Fracture, J. Petit and P. Scott eds., Elsevier, New York, NY, 2003, pp. 962–70.
32.
Zurück zum Zitat R.P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science, and Chemistry, Cambridge University Press, Cambridge, England; New York, NY, 2010.CrossRef R.P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science, and Chemistry, Cambridge University Press, Cambridge, England; New York, NY, 2010.CrossRef
33.
Zurück zum Zitat Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1449–65. Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1449–65.
34.
Zurück zum Zitat Y.J. Ro, S.R. Agnew, G.H. Bray, and R.P. Gangloff: Mater. Sci. Eng. A, 2007, vol. 468, pp. 88–97. Y.J. Ro, S.R. Agnew, G.H. Bray, and R.P. Gangloff: Mater. Sci. Eng. A, 2007, vol. 468, pp. 88–97.
35.
Zurück zum Zitat S.P. Lynch: Corros. Sci., 1982, vol. 22, pp. 925–37. S.P. Lynch: Corros. Sci., 1982, vol. 22, pp. 925–37.
36.
Zurück zum Zitat R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390–97. R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390–97.
37.
Zurück zum Zitat I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92.
38.
Zurück zum Zitat F. Menan and G. Henaff: Mater. Sci. Eng. A, 2009, vol. 519, pp. 70–76. F. Menan and G. Henaff: Mater. Sci. Eng. A, 2009, vol. 519, pp. 70–76.
39.
Zurück zum Zitat Y. Murakami and S. Matsuoka: Eng. Fract. Mech., 2010, vol. 77, pp. 1926–40. Y. Murakami and S. Matsuoka: Eng. Fract. Mech., 2010, vol. 77, pp. 1926–40.
40.
Zurück zum Zitat S.P. Lynch: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, U.K., 2012, vol. 1, pp. 274–378. S.P. Lynch: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, U.K., 2012, vol. 1, pp. 274–378.
41.
Zurück zum Zitat I.M. Robertson, M.L. Martin, and J.A. Fenske: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, U.K., 2012, vol. 2, pp. 166–206. I.M. Robertson, M.L. Martin, and J.A. Fenske: in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, U.K., 2012, vol. 2, pp. 166–206.
42.
Zurück zum Zitat Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 3042–62. Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 3042–62.
43.
Zurück zum Zitat D.C. Slavik and R.P. Gangloff: Acta Mater., 1996, vol. 44, pp. 3515–34. D.C. Slavik and R.P. Gangloff: Acta Mater., 1996, vol. 44, pp. 3515–34.
44.
Zurück zum Zitat V.K. Gupta and S.R. Agnew: Int. J. Fatig., 2011, vol. 33, pp. 1159–74. V.K. Gupta and S.R. Agnew: Int. J. Fatig., 2011, vol. 33, pp. 1159–74.
45.
Zurück zum Zitat D.C. Slavik, C.P. Blankenship, E.A. Starke, and R.P. Gangloff: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1807–17. D.C. Slavik, C.P. Blankenship, E.A. Starke, and R.P. Gangloff: Metall. Mater. Trans. A, 1993, vol. 24A, pp. 1807–17.
46.
Zurück zum Zitat Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2012, in press. Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2012, in press.
47.
Zurück zum Zitat Y. Ro, S.R. Agnew, and R.P. Gangloff: in Fourth International Conference on Very High Cycle Fatigue, J.E. Allison, J.W. Jones, J.M. Larsen, and R.O. Ritchie eds., TMS-AIME, Warrendale, PA, 2007, pp. 407–20. Y. Ro, S.R. Agnew, and R.P. Gangloff: in Fourth International Conference on Very High Cycle Fatigue, J.E. Allison, J.W. Jones, J.M. Larsen, and R.O. Ritchie eds., TMS-AIME, Warrendale, PA, 2007, pp. 407–20.
48.
Zurück zum Zitat R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 151–58. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 151–58.
49.
Zurück zum Zitat M. Gao, P.S. Pao, and R.P. Wei: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1739–50. M. Gao, P.S. Pao, and R.P. Wei: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 1739–50.
50.
Zurück zum Zitat P.S. Pao, M. Gao, and R.P. Wei: in Basic Questions in Fatigue, R.P. Wei and R.P. Gangloff eds., ASTM STP 924, ASTM International, West Conshohocken, PA, 1988, pp. 182–95. P.S. Pao, M. Gao, and R.P. Wei: in Basic Questions in Fatigue, R.P. Wei and R.P. Gangloff eds., ASTM STP 924, ASTM International, West Conshohocken, PA, 1988, pp. 182–95.
51.
Zurück zum Zitat R.P. Wei and M. Gao: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson eds., TMS-AIME, Warrendale, PA, 1990, pp. 789–813. R.P. Wei and M. Gao: in Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson eds., TMS-AIME, Warrendale, PA, 1990, pp. 789–813.
52.
Zurück zum Zitat J.T. Burns, J.M. Larsen, and R.P. Gangloff: Fatig. Fract. Eng. M, 2011, vol. 34, pp. 745–73. J.T. Burns, J.M. Larsen, and R.P. Gangloff: Fatig. Fract. Eng. M, 2011, vol. 34, pp. 745–73.
53.
Zurück zum Zitat D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan: Eng. Fract. Mech., 2003, vol. 70, pp. 49–80. D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan: Eng. Fract. Mech., 2003, vol. 70, pp. 49–80.
54.
Zurück zum Zitat J.M. Papazian, E.L. Anagnostou, S.J. Engel, D. Hoitsma, J. Madsen, R.P. Silberstein, G. Welsh, and J.B. Whiteside: Eng. Fract. Mech., 2009, vol. 76, pp. 620–32. J.M. Papazian, E.L. Anagnostou, S.J. Engel, D. Hoitsma, J. Madsen, R.P. Silberstein, G. Welsh, and J.B. Whiteside: Eng. Fract. Mech., 2009, vol. 76, pp. 620–32.
55.
Zurück zum Zitat A. Shyam, J.E. Allison, C.J. Szczepanski, T.M. Pollock, and J.W. Jones: Acta Mater., 2007, vol. 55, pp. 6606–16. A. Shyam, J.E. Allison, C.J. Szczepanski, T.M. Pollock, and J.W. Jones: Acta Mater., 2007, vol. 55, pp. 6606–16.
56.
Zurück zum Zitat R. Jones, S. Pitt, and D. Peng: Eng. Fail. Anal., 2008, vol. 15m, pp. 1130–11. R. Jones, S. Pitt, and D. Peng: Eng. Fail. Anal., 2008, vol. 15m, pp. 1130–11.
57.
Zurück zum Zitat E.R. de los Rios and A. Navarro: Philos. Mag. A, 1990, vol. 61, pp. 435–49. E.R. de los Rios and A. Navarro: Philos. Mag. A, 1990, vol. 61, pp. 435–49.
59.
Zurück zum Zitat J. Payne, G. Welsh, R.J. Christ Jr., J. Nardiello, and J.M. Papazian: Int. J. Fatig., 2010, vol. 32, pp. 247–55. J. Payne, G. Welsh, R.J. Christ Jr., J. Nardiello, and J.M. Papazian: Int. J. Fatig., 2010, vol. 32, pp. 247–55.
60.
Zurück zum Zitat ASTM G34-01, ASTM International, West Conshohocken, PA, 2007. ASTM G34-01, ASTM International, West Conshohocken, PA, 2007.
61.
Zurück zum Zitat ASTM E466-07, ASTM International, West Conshohocken, PA, 2007. ASTM E466-07, ASTM International, West Conshohocken, PA, 2007.
62.
Zurück zum Zitat ASTM E-1012-05, ASTM International, West Conshohocken, PA, 2005. ASTM E-1012-05, ASTM International, West Conshohocken, PA, 2005.
63.
Zurück zum Zitat P.R. Wiederhold, Water Vapor Measurement Methods and Instrumentation, CRC Press, New York, NY, 1997. P.R. Wiederhold, Water Vapor Measurement Methods and Instrumentation, CRC Press, New York, NY, 1997.
64.
Zurück zum Zitat ASTM E647-05, ASTM International, West Conshohocken, PA, 2006. ASTM E647-05, ASTM International, West Conshohocken, PA, 2006.
65.
Zurück zum Zitat I.M. Chakravarti, R.G. Laha, J. Roy, Handbook of methods of applied statistics, Wiley, New York, 1967. I.M. Chakravarti, R.G. Laha, J. Roy, Handbook of methods of applied statistics, Wiley, New York, 1967.
66.
Zurück zum Zitat J.C. Newman and I.S. Raju: in Computational Methods in the Mechanics of Fracture, S.N. Atluri ed., Elsevier Science, New York, NY, 1986. J.C. Newman and I.S. Raju: in Computational Methods in the Mechanics of Fracture, S.N. Atluri ed., Elsevier Science, New York, NY, 1986.
67.
Zurück zum Zitat R.W. Bush and J.H. Ai: University of Virginia, Charlottesville, VA, unpublished research, 2010. R.W. Bush and J.H. Ai: University of Virginia, Charlottesville, VA, unpublished research, 2010.
68.
Zurück zum Zitat F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41. F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1979, vol. 39, pp. 27–41.
69.
Zurück zum Zitat F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1980, vol. 43, pp. 65–76. F.S. Lin and E.A. Starke: Mater. Sci. Eng., 1980, vol. 43, pp. 65–76.
70.
Zurück zum Zitat J. Ruiz and M. Elices: Acta Mater., 1997, vol. 45, pp. 281–93. J. Ruiz and M. Elices: Acta Mater., 1997, vol. 45, pp. 281–93.
71.
Zurück zum Zitat I.S. Cole, P.A. Corrigan, G.C. Edwards, D. Followell, S. Galea, W. Ganther, B.R. Hinton, T. Ho, C.J. Lewis, T.H. Muster, D. Paterson, D.C. Price, D.A. Scott, and P. Trathen: in Materials Forum, S. Galea and A. Mita eds., Institute of Materials Engineering Australiasia, North Melbourne, Australia, 2009, vol. 33, pp. 27–35. I.S. Cole, P.A. Corrigan, G.C. Edwards, D. Followell, S. Galea, W. Ganther, B.R. Hinton, T. Ho, C.J. Lewis, T.H. Muster, D. Paterson, D.C. Price, D.A. Scott, and P. Trathen: in Materials Forum, S. Galea and A. Mita eds., Institute of Materials Engineering Australiasia, North Melbourne, Australia, 2009, vol. 33, pp. 27–35.
72.
Zurück zum Zitat I. Cole: DSTO, Melbourne, Australia, personal communication, 2011. I. Cole: DSTO, Melbourne, Australia, personal communication, 2011.
73.
Zurück zum Zitat F.G. Nelson, J.G. Kaufman, in: Fracture Toughness Testing at Cryogenic Temperatures, ASTM STP 496, ASTM International, West Conshohocken, PA, 1971, pp. 27-39.CrossRef F.G. Nelson, J.G. Kaufman, in: Fracture Toughness Testing at Cryogenic Temperatures, ASTM STP 496, ASTM International, West Conshohocken, PA, 1971, pp. 27-39.CrossRef
74.
Zurück zum Zitat Air Force Ballistic Missile Division, AF-04(647)-593-3, National Bureau of Standards/Cryogenic Engineering Laboratory, Boulder, CO, 1959. Air Force Ballistic Missile Division, AF-04(647)-593-3, National Bureau of Standards/Cryogenic Engineering Laboratory, Boulder, CO, 1959.
75.
Zurück zum Zitat K.V. Jata and E.A. Starke: Scripta Metall. Mater., 1988, vol. 22, pp. 1553–56. K.V. Jata and E.A. Starke: Scripta Metall. Mater., 1988, vol. 22, pp. 1553–56.
76.
Zurück zum Zitat T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, FL, 1991. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, FL, 1991.
77.
Zurück zum Zitat Z.M. Gasem and R.P. Gangloff: in Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones ed., TMS-AIME, Warrendale, PA, 2001, pp. 501–21. Z.M. Gasem and R.P. Gangloff: in Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Staehle, R.H. Jones ed., TMS-AIME, Warrendale, PA, 2001, pp. 501–21.
78.
Zurück zum Zitat M. Wilhelm, M. Nageswararao, and R. Meyer: in Fatigue Mechanisms, J.T. Fong ed., ASTM STP 675, ASTM International, West Conshohocken, PA, 1979, pp. 214–33. M. Wilhelm, M. Nageswararao, and R. Meyer: in Fatigue Mechanisms, J.T. Fong ed., ASTM STP 675, ASTM International, West Conshohocken, PA, 1979, pp. 214–33.
79.
Zurück zum Zitat T.W. Weir, G.W. Simmons, R.G. Hart, and R.P. Wei: Scripta Metall. Mater., 1980, vol. 14, pp. 357–64. T.W. Weir, G.W. Simmons, R.G. Hart, and R.P. Wei: Scripta Metall. Mater., 1980, vol. 14, pp. 357–64.
80.
Zurück zum Zitat M. Watanabe: J. Phys. Chem. Solids, 2010, vol. 71, pp. 1251–58. M. Watanabe: J. Phys. Chem. Solids, 2010, vol. 71, pp. 1251–58.
81.
Zurück zum Zitat G.M. Scamans, R. Alani, and P.R. Swann: Corros. Sci., 1976, vol. 16, pp. 443–59. G.M. Scamans, R. Alani, and P.R. Swann: Corros. Sci., 1976, vol. 16, pp. 443–59.
82.
Zurück zum Zitat M. Francis: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 2012. M. Francis: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 2012.
83.
Zurück zum Zitat S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93. S.W. Smith and J.R. Scully: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 179–93.
84.
Zurück zum Zitat R.P. Wei: Fatig. Fract. Eng. M, 2002, vol. 25, pp. 845–54. R.P. Wei: Fatig. Fract. Eng. M, 2002, vol. 25, pp. 845–54.
85.
Zurück zum Zitat R. Braun, H.J. Schluter, and H. Zuchner: in Hydrogen Transport and Cracking in Metals, A. Turnbull ed., The Institute of Metals, Teddington, U.K., 1994, pp. 280–88. R. Braun, H.J. Schluter, and H. Zuchner: in Hydrogen Transport and Cracking in Metals, A. Turnbull ed., The Institute of Metals, Teddington, U.K., 1994, pp. 280–88.
86.
Zurück zum Zitat J.R. Scully, G.A. Young, and S.W. Smith: Mater. Sci. Forum, 2000, vol. 331–333, pp. 1583–99. J.R. Scully, G.A. Young, and S.W. Smith: Mater. Sci. Forum, 2000, vol. 331–333, pp. 1583–99.
87.
Zurück zum Zitat J.R. Scully and G.A. Young: in Gaseous Hydrogen Embrittlement of Metals in Energy Technologies, R.P. Gangloff, B.P. Somerday eds., Woodhead Publishing Ltd., Cambridge, U.K., 2012, vol. 1, pp. 707–59. J.R. Scully and G.A. Young: in Gaseous Hydrogen Embrittlement of Metals in Energy Technologies, R.P. Gangloff, B.P. Somerday eds., Woodhead Publishing Ltd., Cambridge, U.K., 2012, vol. 1, pp. 707–59.
88.
Zurück zum Zitat G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–49. G.A. Young and J.R. Scully: Acta Mater., 1998, vol. 46, pp. 6337–49.
89.
Zurück zum Zitat A.S. El-Amoush: J. Alloys Compd., 2008, vol. 465, pp. 497–501. A.S. El-Amoush: J. Alloys Compd., 2008, vol. 465, pp. 497–501.
90.
Zurück zum Zitat N. Takano: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 336–39. N. Takano: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 336–39.
91.
Zurück zum Zitat J.T. Burns: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 2010. J.T. Burns: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 2010.
92.
Zurück zum Zitat H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin: J. Alloys Compd., 1997, vol. 253, pp. 260–64. H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin: J. Alloys Compd., 1997, vol. 253, pp. 260–64.
93.
Zurück zum Zitat K.R. Hebert, T. Gessmann, K.G. Lynn, and P. Asoka-Kumar: J. Electrochem. Soc., 2004, vol. 151, pp. B22–26. K.R. Hebert, T. Gessmann, K.G. Lynn, and P. Asoka-Kumar: J. Electrochem. Soc., 2004, vol. 151, pp. B22–26.
94.
Zurück zum Zitat O.D. Smiyan, M.V. Coval, R.K. Melekov, N.L. Korobanova, A.M. Krutsan, and V.A. Yakovchik: Soviet. Mater. Sci., 1983, vol. 19, pp. 422–26. O.D. Smiyan, M.V. Coval, R.K. Melekov, N.L. Korobanova, A.M. Krutsan, and V.A. Yakovchik: Soviet. Mater. Sci., 1983, vol. 19, pp. 422–26.
95.
Zurück zum Zitat A.T. Kermanidis, P.V. Petroyiannis, and S.G. Pantelakis: Theory Appl. Fract. Mech., 2005, vol. 43, pp. 121–32. A.T. Kermanidis, P.V. Petroyiannis, and S.G. Pantelakis: Theory Appl. Fract. Mech., 2005, vol. 43, pp. 121–32.
96.
Zurück zum Zitat P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis: Theory Appl. Fract. Mech., 2004, vol. 41, pp. 173–83. P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis: Theory Appl. Fract. Mech., 2004, vol. 41, pp. 173–83.
97.
Zurück zum Zitat C. Atkinson: J. Appl. Phys., 1971, vol. 42, pp. 1994–97. C. Atkinson: J. Appl. Phys., 1971, vol. 42, pp. 1994–97.
98.
Zurück zum Zitat S. Adhikari, J.H. Ai, K.R. Hebert, K.M. Ho, and C.Z. Wang: Electrochim. Acta, 2010, vol. 55, pp. 5326–31. S. Adhikari, J.H. Ai, K.R. Hebert, K.M. Ho, and C.Z. Wang: Electrochim. Acta, 2010, vol. 55, pp. 5326–31.
99.
Zurück zum Zitat C.E. Buckley and H.K. Birnbaum: J. Alloys Compd., 2002, vol. 330, pp. 649–53. C.E. Buckley and H.K. Birnbaum: J. Alloys Compd., 2002, vol. 330, pp. 649–53.
100.
Zurück zum Zitat D.M. Li, R.P. Gangloff, and J.R. Scully: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 849–64. D.M. Li, R.P. Gangloff, and J.R. Scully: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 849–64.
101.
Zurück zum Zitat C. Wolverton, V. Ozolins, and M. Asta: Phys. Rev. B, 2004, 69(144109), pp. 1–16. C. Wolverton, V. Ozolins, and M. Asta: Phys. Rev. B, 2004, 69(144109), pp. 1–16.
102.
Zurück zum Zitat G. Lu, E. Kaxiras, Phys. Rev. Lett., 2005, vol. 94 (155501), pp. 1-4. G. Lu, E. Kaxiras, Phys. Rev. Lett., 2005, vol. 94 (155501), pp. 1-4.
103.
Zurück zum Zitat M.O. Speidel: Hydrogen Embrittlement and Stress Corrosion Cracking, G. Gibala, R.F. Hehemann, eds., ASM International, Materials Park, OH, 1984, pp. 271–96. M.O. Speidel: Hydrogen Embrittlement and Stress Corrosion Cracking, G. Gibala, R.F. Hehemann, eds., ASM International, Materials Park, OH, 1984, pp. 271–96.
104.
Zurück zum Zitat R.W. Siegel: J. Nucl. Mater., 1978, vol. 69–67, pp. 117–46. R.W. Siegel: J. Nucl. Mater., 1978, vol. 69–67, pp. 117–46.
105.
Zurück zum Zitat A.M. Lucente and J.R. Scully: Corros. Sci., 2007, vol. 49, pp. 2351–61. A.M. Lucente and J.R. Scully: Corros. Sci., 2007, vol. 49, pp. 2351–61.
106.
Zurück zum Zitat J.H. Ai: University of Virginia, Charlottesville, VA, unpublished research, 2010. J.H. Ai: University of Virginia, Charlottesville, VA, unpublished research, 2010.
107.
Zurück zum Zitat G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–11. G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–11.
108.
Zurück zum Zitat J. Toribio and V. Kharin: J. Mater. Sci., 2006, vol. 41, pp. 6015–25. J. Toribio and V. Kharin: J. Mater. Sci., 2006, vol. 41, pp. 6015–25.
109.
Zurück zum Zitat J. Toribio and V. Kharin: Fatig. Fract. Eng. M, 1997, vol. 20, pp. 729–45. J. Toribio and V. Kharin: Fatig. Fract. Eng. M, 1997, vol. 20, pp. 729–45.
110.
Zurück zum Zitat D.C. Ahn, P. Sofronis, and R. Minich: J. Mech. Phys. Solids, 2006, vol. 54, pp. 735–55. D.C. Ahn, P. Sofronis, and R. Minich: J. Mech. Phys. Solids, 2006, vol. 54, pp. 735–55.
111.
Zurück zum Zitat A. Pedersen and H. Jonsson: Acta Mater., 2009, vol. 57, pp. 4036–45. A. Pedersen and H. Jonsson: Acta Mater., 2009, vol. 57, pp. 4036–45.
112.
Zurück zum Zitat J.P. Hirth: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 861–90. J.P. Hirth: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 861–90.
113.
Zurück zum Zitat T.Y. Zhang, H. Shen, and J.E. Hack: Scripta Metall. Mater., 1992, vol. 27, pp. 1605–10. T.Y. Zhang, H. Shen, and J.E. Hack: Scripta Metall. Mater., 1992, vol. 27, pp. 1605–10.
114.
Zurück zum Zitat R. Bullough and R.C. Newman: Rep. Prog. Phys., 1970, vol. 33, pp. 101–48. R. Bullough and R.C. Newman: Rep. Prog. Phys., 1970, vol. 33, pp. 101–48.
115.
Zurück zum Zitat E. Clouet: Acta Mater., 2006, vol. 54, pp. 3543–52. E. Clouet: Acta Mater., 2006, vol. 54, pp. 3543–52.
116.
Zurück zum Zitat C. Gasqueres, C. Sarrazin-Baudoux, J. Petit, and D. Dumont: Scripta Mater., 2005, vol. 53, pp. 1333–37. C. Gasqueres, C. Sarrazin-Baudoux, J. Petit, and D. Dumont: Scripta Mater., 2005, vol. 53, pp. 1333–37.
117.
Zurück zum Zitat S. Richard, C. Gasqueres, C. Sarrazin-Baudoux, and J. Petit: Eng. Fract. Mech., 2010, vol. 77, pp. 1941–52. S. Richard, C. Gasqueres, C. Sarrazin-Baudoux, and J. Petit: Eng. Fract. Mech., 2010, vol. 77, pp. 1941–52.
118.
Zurück zum Zitat J.C. Newman: Behavior of Short Cracks in Airframe Components - AGARD SP-328, AGARD, H. Zocher, eds., Toronto, CA, 1982, pp. 6.1–6.26. J.C. Newman: Behavior of Short Cracks in Airframe Components - AGARD SP-328, AGARD, H. Zocher, eds., Toronto, CA, 1982, pp. 6.1–6.26.
119.
Zurück zum Zitat J.C. Newman, X.R. Wu, M.H. Swain, W. Zhao, E.P. Phillips, and C.F. Ding: Fatig. Fract. Eng. M, 2005, vol. 23, pp. 59–72. J.C. Newman, X.R. Wu, M.H. Swain, W. Zhao, E.P. Phillips, and C.F. Ding: Fatig. Fract. Eng. M, 2005, vol. 23, pp. 59–72.
120.
Zurück zum Zitat X.R. Wu, J.C. Newman, W. Zhao, M.H. Swain, C.F. Ding, and E.P. Phillips: Fatig. Fract. Eng. M, 1998, vol. 21, pp. 1289–06. X.R. Wu, J.C. Newman, W. Zhao, M.H. Swain, C.F. Ding, and E.P. Phillips: Fatig. Fract. Eng. M, 1998, vol. 21, pp. 1289–06.
121.
Zurück zum Zitat K. Shiozawa, Y. Tohda, and S.M. Sun: Fatig. Fract. Eng. M, 1997, vol. 20, pp. 237–47. K. Shiozawa, Y. Tohda, and S.M. Sun: Fatig. Fract. Eng. M, 1997, vol. 20, pp. 237–47.
122.
Zurück zum Zitat B.A. Bilby, A.H. Cottrell, and K.H. Swindon: Proc. R. Soc. Lond. A, 1966, vol. 272, pp. 304–14. B.A. Bilby, A.H. Cottrell, and K.H. Swindon: Proc. R. Soc. Lond. A, 1966, vol. 272, pp. 304–14.
Metadaten
Titel
Effect of Low Temperature on Fatigue Crack Formation and Microstructure-Scale Growth from Corrosion Damage in Al-Zn-Mg-Cu
verfasst von
James T. Burns
Richard P. Gangloff
Publikationsdatum
01.05.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1374-3

Weitere Artikel der Ausgabe 5/2013

Metallurgical and Materials Transactions A 5/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.