Skip to main content
Erschienen in: Journal of Materials Science 18/2020

27.03.2020 | Materials for life sciences

Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing

verfasst von: Huiping Shao, Yumeng Zhang, Tao Lin, Jiang Peng, Aiyuan Wang, Fucheng Yu, Zhinan Zhang, Luhui Wang

Erschienen in: Journal of Materials Science | Ausgabe 18/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the precursors of MgxCa3−x(PO4)2 powders with different magnesium contents were first synthesized by a liquid-phase precipitation method with simple operation and easy control of the reaction process. And the MgxCa3−x(PO4)2 slurry was used to print porous scaffolds by 3D gel-printing (3DGP), and then the scaffolds were degreased and sintered to improve performance, which simplifies the process and saves costs. The effects of different magnesium ions (Mg2+) doping contents on the precursors were investigated. When Mg2+ doping content is 0, 5 mol%, 10 mol% and 30 mol%, the particle diameters of the precursors are, respectively, 44.51 μm, 41.91 μm, 38.38 μm and 31.93 μm. The effects of different Mg2+ doping amounts on the biological and mechanical properties of the scaffolds were studied. When the doping Mg2+ content is 0, 5 mol%, 10 mol% and 30 mol%, respectively, the porosity of the scaffolds is 72.11%, 70.26%, 69.83% and 65.15%, and the strength is 1.04 ± 0.01 MPa, 0.73 ± 0.17 MPa, 0.23 ± 0.01 MPa and 1.89 ± 0.21 MPa, respectively. The degradation behavior was observed when the scaffolds were immersed in phosphate buffer saline for 8 weeks, which indicate that MgxCa3−x(PO4)2 composite scaffolds are expected to be more widely used in the field of bone defect repairing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Komaki H, Tanaka T, Chazono M, Kikuchi T (2006) Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 27(29):5118–5126CrossRef Komaki H, Tanaka T, Chazono M, Kikuchi T (2006) Repair of segmental bone defects in rabbit tibiae using a complex of β-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials 27(29):5118–5126CrossRef
3.
Zurück zum Zitat Gugala Z, Gogolewski S (2002) Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury 33(SUPPL. 2):71–76CrossRef Gugala Z, Gogolewski S (2002) Healing of critical-size segmental bone defects in the sheep tibiae using bioresorbable polylactide membranes. Injury 33(SUPPL. 2):71–76CrossRef
4.
Zurück zum Zitat Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554CrossRef
5.
Zurück zum Zitat Pihlman H, Keränen P, Paakinaho K, Linden J, Hannula M, Manninen IK, Hyttinen J, Manninen M, Laitinen-Vapaavuori O (2018) Novel osteoconductive β-tricalcium phosphate/poly (L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect. J Mater Sci Mater Med 29(10):156. https://doi.org/10.1007/s10856-018-6159-9 CrossRef Pihlman H, Keränen P, Paakinaho K, Linden J, Hannula M, Manninen IK, Hyttinen J, Manninen M, Laitinen-Vapaavuori O (2018) Novel osteoconductive β-tricalcium phosphate/poly (L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect. J Mater Sci Mater Med 29(10):156. https://​doi.​org/​10.​1007/​s10856-018-6159-9 CrossRef
6.
Zurück zum Zitat Liu W, Zhai D, Huan Z, Wu C, Chang J (2015) Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomater 21:217–227CrossRef Liu W, Zhai D, Huan Z, Wu C, Chang J (2015) Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta Biomater 21:217–227CrossRef
7.
Zurück zum Zitat Chen G, Chen N, Wang Q (2019) Fabrication and properties of poly (vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 172:17–28CrossRef Chen G, Chen N, Wang Q (2019) Fabrication and properties of poly (vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol 172:17–28CrossRef
8.
9.
Zurück zum Zitat Pae HC, Kang JH, Cha JK, Lee JS, Paik JW, Jung UW, Kim BH, Choi SH (2019) 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects. J Biomed Mater Res Part B Appl Biomater 107(4):1254–1263CrossRef Pae HC, Kang JH, Cha JK, Lee JS, Paik JW, Jung UW, Kim BH, Choi SH (2019) 3D-printed polycaprolactone scaffold mixed with β-tricalcium phosphate as a bone regenerative material in rabbit calvarial defects. J Biomed Mater Res Part B Appl Biomater 107(4):1254–1263CrossRef
10.
Zurück zum Zitat Ke D, Dernell W, Bandyopadhyay A, Bose S (2015) Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: mechanical properties and in vivo osteogenesis in a rabbit femur model. J Biomed Mater Res Part B Appl Biomater 103(8):1549–1559CrossRef Ke D, Dernell W, Bandyopadhyay A, Bose S (2015) Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: mechanical properties and in vivo osteogenesis in a rabbit femur model. J Biomed Mater Res Part B Appl Biomater 103(8):1549–1559CrossRef
11.
Zurück zum Zitat Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, Mao C, Wang Y (2018) 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthc Mater 7(17):1800441CrossRef Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, Mao C, Wang Y (2018) 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthc Mater 7(17):1800441CrossRef
12.
Zurück zum Zitat Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-Tricalcium phosphate. Adv Healthc Mater 5(1):128–136CrossRef Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-Tricalcium phosphate. Adv Healthc Mater 5(1):128–136CrossRef
13.
Zurück zum Zitat Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng, C 25(2):131–143CrossRef Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng, C 25(2):131–143CrossRef
15.
Zurück zum Zitat Mellier C, Fayon F, Boukhechba F, Verron E, Leferrec M, Montavon G, Lesoeur J, Schnitzler V, Massiot D, Janvier P, Gauthier O, Bouler JM, Bujoli B (2015) Design and properties of novel gallium-doped injectable apatitic cements. Acta Biomater 24:322–332CrossRef Mellier C, Fayon F, Boukhechba F, Verron E, Leferrec M, Montavon G, Lesoeur J, Schnitzler V, Massiot D, Janvier P, Gauthier O, Bouler JM, Bujoli B (2015) Design and properties of novel gallium-doped injectable apatitic cements. Acta Biomater 24:322–332CrossRef
16.
Zurück zum Zitat Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103(12):1666–1674CrossRef Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103(12):1666–1674CrossRef
17.
Zurück zum Zitat Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Ferreira JMF (2010) Synthesis and structural characterization of strontium-and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater 6(2):571–576CrossRef Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Ferreira JMF (2010) Synthesis and structural characterization of strontium-and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater 6(2):571–576CrossRef
18.
Zurück zum Zitat Abrantes JCC, Kaushal A, Pina S, Döbelin N, Bohner M, Ferreira JMF (2016) Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. J Eur Ceram Soc 36(3):817–827CrossRef Abrantes JCC, Kaushal A, Pina S, Döbelin N, Bohner M, Ferreira JMF (2016) Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α↔β-tricalcium phosphate phase transformations. J Eur Ceram Soc 36(3):817–827CrossRef
20.
Zurück zum Zitat Rude RK (1998) Magnesium deficiency: a cause of heterogenous disease in humans. J Bone Miner Res 13(4):749–758CrossRef Rude RK (1998) Magnesium deficiency: a cause of heterogenous disease in humans. J Bone Miner Res 13(4):749–758CrossRef
21.
Zurück zum Zitat Gallo M, Santoni BLG, Douillard T, Zhang F, Gremillard L, Dolder S, Hofstetter W, Meille S, Bohner M, Chevalier J, Tadier S (2019) Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomater 89:391–402CrossRef Gallo M, Santoni BLG, Douillard T, Zhang F, Gremillard L, Dolder S, Hofstetter W, Meille S, Bohner M, Chevalier J, Tadier S (2019) Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomater 89:391–402CrossRef
22.
Zurück zum Zitat Zhang Y, Shao H, Lin T, Peng J, Wang A, Zhang Z, Wang L, Liu S, Yu X (2019) Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method. Ceram Int 45(16):20493–20500CrossRef Zhang Y, Shao H, Lin T, Peng J, Wang A, Zhang Z, Wang L, Liu S, Yu X (2019) Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method. Ceram Int 45(16):20493–20500CrossRef
23.
Zurück zum Zitat Matsumoto N, Sato K, Yoshida K, Hashimoto K, Toda Y (2009) Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater 5(8):3157–3164CrossRef Matsumoto N, Sato K, Yoshida K, Hashimoto K, Toda Y (2009) Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater 5(8):3157–3164CrossRef
24.
Zurück zum Zitat Fellah BH, Layrolle P (2009) Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater 5(2):735–742CrossRef Fellah BH, Layrolle P (2009) Sol-gel synthesis and characterization of macroporous calcium phosphate bioceramics containing microporosity. Acta Biomater 5(2):735–742CrossRef
27.
Zurück zum Zitat Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46(2):386–395CrossRef Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46(2):386–395CrossRef
28.
Zurück zum Zitat Zairani NAS, Jaafar M, Ahmad N, Razak KA (2016) Fabrication and characterization of porous β-tricalcium phosphate scaffolds coated with alginate. Ceram Int 42(4):5141–5147CrossRef Zairani NAS, Jaafar M, Ahmad N, Razak KA (2016) Fabrication and characterization of porous β-tricalcium phosphate scaffolds coated with alginate. Ceram Int 42(4):5141–5147CrossRef
31.
Zurück zum Zitat Zhang Y, Pan J, Liu WY (2019) Application of 3D printing technology in spinal surgery. J Gannan Med Univ 39(05):537–540 Zhang Y, Pan J, Liu WY (2019) Application of 3D printing technology in spinal surgery. J Gannan Med Univ 39(05):537–540
32.
Zurück zum Zitat Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2018) 3D printing porous ceramic scaffolds for bone tissue engineering: a review. Orthop J China 26(14):1306–1310 Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2018) 3D printing porous ceramic scaffolds for bone tissue engineering: a review. Orthop J China 26(14):1306–1310
33.
Zurück zum Zitat Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res Part A 102(1):254–274CrossRef Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res Part A 102(1):254–274CrossRef
34.
Zurück zum Zitat Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6):569–573CrossRef Lichte P, Pape HC, Pufe T, Kobbe P, Fischer H (2011) Scaffolds for bone healing: concepts, materials and evidence. Injury 42(6):569–573CrossRef
35.
Zurück zum Zitat Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z (2016) 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc 36(6):1495–1503CrossRef Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z (2016) 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc 36(6):1495–1503CrossRef
36.
Zurück zum Zitat Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP (2003) Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg Mater 39(9):947–950CrossRef Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP (2003) Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg Mater 39(9):947–950CrossRef
37.
Zurück zum Zitat Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE (2005) Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med 16(5):455–460CrossRef Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE (2005) Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med 16(5):455–460CrossRef
38.
Zurück zum Zitat Seidenstuecker M, Kerr L, Bernstein A, Mayr HO, Suedkamp NP, Gadow R, Krieg P, Latorre SH, Thomann R, Syrowatka F, Esslinger S (2017) 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials 11(1):13CrossRef Seidenstuecker M, Kerr L, Bernstein A, Mayr HO, Suedkamp NP, Gadow R, Krieg P, Latorre SH, Thomann R, Syrowatka F, Esslinger S (2017) 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials 11(1):13CrossRef
39.
Zurück zum Zitat Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776CrossRef Xiong Z, Yan Y, Wang S, Zhang R, Zhang C (2002) Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr Mater 46(11):771–776CrossRef
40.
Zurück zum Zitat Hernandez CJ, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78CrossRef Hernandez CJ, Beaupre GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78CrossRef
Metadaten
Titel
Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing
verfasst von
Huiping Shao
Yumeng Zhang
Tao Lin
Jiang Peng
Aiyuan Wang
Fucheng Yu
Zhinan Zhang
Luhui Wang
Publikationsdatum
27.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04590-x

Weitere Artikel der Ausgabe 18/2020

Journal of Materials Science 18/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.