Skip to main content
Erschienen in: Journal of Materials Science 14/2019

23.04.2019 | Materials for life sciences

3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds

verfasst von: Yule Ma, Honglian Dai, Xiaolong Huang, Yanpiao Long

Erschienen in: Journal of Materials Science | Ausgabe 14/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of bioglass (BG) has been proved to be an effective strategy for reducing the sintering temperature and improving the degradability of bioceramics. In this work, a Na2O–CaO–MgO–P2O5 bioglass with a low melting temperature and an average particle size of 1.3 μm and crystalline β-tricalcium phosphate (β-TCP) with an average particle size of 600 nm were first prepared separately. 3D printing was then used to fabricate the β-TCP/BG composite porous ceramic scaffolds. The Na2O–CaO–MgO–P2O5 bioglass-reinforced β-TCP porous ceramic scaffolds demonstrated a significant enhancement in their mechanical properties, degradability and biocompatibility compared with pure β-TCP ceramics. The results showed that the compressive strength and elastic modulus of the reinforced β-TCP ceramic scaffold were 8.34 MPa and 208.5 MPa, respectively, and the degradation rate of the β-TCP porous ceramic scaffolds increased by a factor of 2.99. In addition, the optimized scaffold distinctly promoted MC3T3-E1 osteoblast cell proliferation. Na2O–CaO–MgO–P2O5 bioglass-reinforced β-TCP porous ceramic scaffold has great potential for application in bone regeneration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bergmann C, Lindner M, Zhang W et al (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30:2563–2567CrossRef Bergmann C, Lindner M, Zhang W et al (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30:2563–2567CrossRef
2.
Zurück zum Zitat Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet 354:S32–S34CrossRef Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet 354:S32–S34CrossRef
3.
Zurück zum Zitat Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam
4.
Zurück zum Zitat Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRef Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466CrossRef
5.
Zurück zum Zitat Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441CrossRef Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441CrossRef
6.
Zurück zum Zitat LeGeros RZ, Lin S, Rohanizadeh R et al (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209CrossRef LeGeros RZ, Lin S, Rohanizadeh R et al (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209CrossRef
7.
Zurück zum Zitat Sánchez-Salcedo S, Arcos D, Vallet-Regí M (2008) Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 377:19–42CrossRef Sánchez-Salcedo S, Arcos D, Vallet-Regí M (2008) Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng Mater 377:19–42CrossRef
8.
Zurück zum Zitat Flautre B, Descamps M, Delecourt C et al (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections—experimental study in the rabbit. J Mater Sci Mater Med 12:679–682CrossRef Flautre B, Descamps M, Delecourt C et al (2001) Porous HA ceramic for bone replacement: role of the pores and interconnections—experimental study in the rabbit. J Mater Sci Mater Med 12:679–682CrossRef
9.
Zurück zum Zitat Klein C, de Groot K, Chen W et al (1994) Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials 15:31–34CrossRef Klein C, de Groot K, Chen W et al (1994) Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials 15:31–34CrossRef
10.
Zurück zum Zitat Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984CrossRef Orlovskii VP, Komlev VS, Barinov SM (2002) Hydroxyapatite and hydroxyapatite-based ceramics. Inorg Mater 38:973–984CrossRef
11.
Zurück zum Zitat Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14:195–200CrossRef Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14:195–200CrossRef
12.
Zurück zum Zitat Le Huec JC, Schaeverbeke T, Clement D et al (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16:113–118CrossRef Le Huec JC, Schaeverbeke T, Clement D et al (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16:113–118CrossRef
13.
Zurück zum Zitat Kwon S-H, Jun Y-K, Hong S-H, Kim H-E (2003) Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J Eur Ceram Soc 23:1039–1045CrossRef Kwon S-H, Jun Y-K, Hong S-H, Kim H-E (2003) Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J Eur Ceram Soc 23:1039–1045CrossRef
14.
Zurück zum Zitat Wang Z, Guo Z, Bai H et al (2013) Clinical evaluation of beta-TCP in the treatment of lacunar bone defects: a prospective, randomized controlled study. Mater Sci Eng C 33:1894–1899CrossRef Wang Z, Guo Z, Bai H et al (2013) Clinical evaluation of beta-TCP in the treatment of lacunar bone defects: a prospective, randomized controlled study. Mater Sci Eng C 33:1894–1899CrossRef
15.
Zurück zum Zitat Lu Z, Zreiqat H (2010) Beta-tricalcium phosphate exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway. Biochem Biophys Res Commun 394:323–329CrossRef Lu Z, Zreiqat H (2010) Beta-tricalcium phosphate exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway. Biochem Biophys Res Commun 394:323–329CrossRef
16.
Zurück zum Zitat Wiltfang J, Merten HA, Schlegel KA et al (2002) Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121CrossRef Wiltfang J, Merten HA, Schlegel KA et al (2002) Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121CrossRef
17.
Zurück zum Zitat Chappard D, Guillaume B, Mallet R et al (2010) Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 41:321–326CrossRef Chappard D, Guillaume B, Mallet R et al (2010) Sinus lift augmentation and beta-TCP: a microCT and histologic analysis on human bone biopsies. Micron 41:321–326CrossRef
18.
Zurück zum Zitat Houmard M, Fu Q, Genet M et al (2013) On the structural, mechanical, and biodegradation properties of HA/beta-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101:1233–1242CrossRef Houmard M, Fu Q, Genet M et al (2013) On the structural, mechanical, and biodegradation properties of HA/beta-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101:1233–1242CrossRef
19.
Zurück zum Zitat Oonishi H, Oomamiuda H (2016) Degradation/resorption in bioactive ceramics in orthopaedics. In: Murphy W, Black J, Hastings G (eds) Handbook of biomaterial properties. Springer, New York, pp 495–507 Oonishi H, Oomamiuda H (2016) Degradation/resorption in bioactive ceramics in orthopaedics. In: Murphy W, Black J, Hastings G (eds) Handbook of biomaterial properties. Springer, New York, pp 495–507
20.
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRef
21.
Zurück zum Zitat Deng C, Yao Q, Feng C et al (2017) 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration. Adv Funct Mater 27:1703117CrossRef Deng C, Yao Q, Feng C et al (2017) 3D printing of bilineage constructive biomaterials for bone and cartilage regeneration. Adv Funct Mater 27:1703117CrossRef
22.
Zurück zum Zitat Handschel J, Wiesmann HP, Stratmann U et al (2002) TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23:1689–1695CrossRef Handschel J, Wiesmann HP, Stratmann U et al (2002) TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23:1689–1695CrossRef
23.
Zurück zum Zitat Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425CrossRef Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425CrossRef
24.
Zurück zum Zitat Oonishi H, Kushitani S et al (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325CrossRef Oonishi H, Kushitani S et al (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325CrossRef
25.
Zurück zum Zitat Xynos ID, Edgar AJ, Buttery LDK et al (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55:151–157CrossRef Xynos ID, Edgar AJ, Buttery LDK et al (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55:151–157CrossRef
26.
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
27.
Zurück zum Zitat Xynos ID, Edgar AJ, Buttery LDK et al (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465CrossRef Xynos ID, Edgar AJ, Buttery LDK et al (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465CrossRef
28.
Zurück zum Zitat Dai C, Guo H, Lu J et al (2011) Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μC. Biomaterials 32:8506–8517CrossRef Dai C, Guo H, Lu J et al (2011) Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μC. Biomaterials 32:8506–8517CrossRef
29.
Zurück zum Zitat Feng B, Jinkang Z, Zhen W et al (2011) The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater 6:015007CrossRef Feng B, Jinkang Z, Zhen W et al (2011) The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater 6:015007CrossRef
30.
Zurück zum Zitat Ramay HR, Zhang M (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25:5171–5180CrossRef Ramay HR, Zhang M (2004) Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials 25:5171–5180CrossRef
31.
Zurück zum Zitat Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam
32.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
33.
Zurück zum Zitat Wu S, Liu X, Yeung KWK (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36CrossRef Wu S, Liu X, Yeung KWK (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36CrossRef
34.
Zurück zum Zitat Leukers B, Gülkan H, Irsen SH et al (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124CrossRef Leukers B, Gülkan H, Irsen SH et al (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16:1121–1124CrossRef
35.
Zurück zum Zitat Inzana JA, Olvera D, Fuller SM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef Inzana JA, Olvera D, Fuller SM et al (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef
36.
Zurück zum Zitat Wu C, Fan W, Zhou Y et al (2012) 3D-printing of highly uniform CaSiO 3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 22:12288–12295CrossRef Wu C, Fan W, Zhou Y et al (2012) 3D-printing of highly uniform CaSiO 3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 22:12288–12295CrossRef
37.
Zurück zum Zitat Castilho M, Moseke C, Ewald A et al (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006CrossRef Castilho M, Moseke C, Ewald A et al (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006CrossRef
38.
Zurück zum Zitat Neufurth M, Wang X, Wang S et al (2017) 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 64:377–388CrossRef Neufurth M, Wang X, Wang S et al (2017) 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 64:377–388CrossRef
39.
Zurück zum Zitat Cox SC, Thornby JA, Gibbons GJ et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng, C 47:237–247CrossRef Cox SC, Thornby JA, Gibbons GJ et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng, C 47:237–247CrossRef
40.
Zurück zum Zitat Pei X, Ma L, Zhang B et al (2017) Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication 9:045008CrossRef Pei X, Ma L, Zhang B et al (2017) Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Biofabrication 9:045008CrossRef
41.
Zurück zum Zitat Xu W, Xu C, Yi J, Dai H (2018) The effect of different hydroxyapatite microparticles on the osteogenic differentiation of MC3T3-E1 preosteoblasts. J Mater Chem B 6:5234–5242CrossRef Xu W, Xu C, Yi J, Dai H (2018) The effect of different hydroxyapatite microparticles on the osteogenic differentiation of MC3T3-E1 preosteoblasts. J Mater Chem B 6:5234–5242CrossRef
42.
Zurück zum Zitat Brunner TJ, Grass RN, Bohner M et al (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 17:4072–4078CrossRef Brunner TJ, Grass RN, Bohner M et al (2007) Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. J Mater Chem 17:4072–4078CrossRef
43.
Zurück zum Zitat Lee S-H, Kochawattana S, Messing GL et al (2006) Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J Am Ceram Soc 89:1945–1950CrossRef Lee S-H, Kochawattana S, Messing GL et al (2006) Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J Am Ceram Soc 89:1945–1950CrossRef
44.
Zurück zum Zitat Dunne M, Corrigan O, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–1668CrossRef Dunne M, Corrigan O, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21:1659–1668CrossRef
45.
Zurück zum Zitat Lin K, Chang J, Liu Z, Zeng Y, Shen R (2009) Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J Eur Ceram Soc 29:2937–2943CrossRef Lin K, Chang J, Liu Z, Zeng Y, Shen R (2009) Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J Eur Ceram Soc 29:2937–2943CrossRef
46.
Zurück zum Zitat Wang S, Falk MM, Rashad A et al (2011) Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering. J Mater Sci Mater Med 22:1195–1203CrossRef Wang S, Falk MM, Rashad A et al (2011) Evaluation of 3D nano–macro porous bioactive glass scaffold for hard tissue engineering. J Mater Sci Mater Med 22:1195–1203CrossRef
47.
Zurück zum Zitat Chen L, Deng C, Li J et al (2019) 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 196:138–150CrossRef Chen L, Deng C, Li J et al (2019) 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 196:138–150CrossRef
Metadaten
Titel
3D printing of bioglass-reinforced β-TCP porous bioceramic scaffolds
verfasst von
Yule Ma
Honglian Dai
Xiaolong Huang
Yanpiao Long
Publikationsdatum
23.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03632-3

Weitere Artikel der Ausgabe 14/2019

Journal of Materials Science 14/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.