Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 6/2014

01.11.2014 | Original Paper

Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results

verfasst von: Xiaobin Ding, Lianyang Zhang, Hehua Zhu, Qi Zhang

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young’s modulus and Poisson’s ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size (d max/d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios (L/d) were studied for each d max/d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young’s modulus using the default PFC3D procedure keep increasing with larger L/d, although the rate of increase decreases with larger L/d. This is mainly caused by the decrease of model porosity with larger L/d associated with the default PFC3D method and the better balanced contact force chains at larger L/d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/d but the rate is much smaller, the average simulated Young’s modulus decreases with larger L/d instead, and the average simulated Poisson’s ratio versus L/d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/d min leading to greater average simulated UCS and Young’s modulus and smaller average simulated Poisson’s ratio, and the changing rates become smaller at larger d max/d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
  1. Akram MS, Sharrock GB (2010) Physical and numerical investigation of a cemented granular assembly of steel spheres. Int J Numer Anal Methods Geomech 34(18):1896–1934. doi:10.​1002/​nag.​885 View Article
  2. Antonellini M, Pollard D (1995) Distinct element modeling of deformation bands in sandstone. J Struct Geol 17(8):1165–1182View Article
  3. ASTM International (2008) Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM D7012-07. West Conshohocken, PA
  4. Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Florida
  5. Bieniawski ZT (1968) The effect of specimen size on compressive strength of coal. Int J Rock Mech Min Sci 5:325–335View Article
  6. Blair SC, Cook NGW (1998) Analysis of compressive fracture in rock using statistical techniques: part I. A non-linear rule-based model. Int J Rock Mech Min Sci 35(7):837–848. doi:10.​1016/​s0148-9062(98)00008-4 View Article
  7. Boutt D, McPherson B (2002) The role of particle packing in modeling rock mechanical behavior using discrete elements. In: Discrete element methods, pp 86–92. doi:10.​1061/​40647(259)16
  8. Brandt H (1955) A study of the speed of sound in porous granular media. J Appl Mech 22:479–486
  9. Cho N, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010. doi:10.​1016/​j.​ijrmms.​2007.​02.​002 View Article
  10. Collop AC, McDowell GR, Lee Y (2004) Use of the distinct element method to model the deformation behavior of an idealized asphalt mixture. Int J Pavement Eng 5(1):1–7. doi:10.​1080/​1029843041000170​9164 View Article
  11. Cundall P (1987) Distinct element models of rock and soil structure. In: Brown ET (ed) Analytical and computational methods in engineering rock mechanics. Allen & Unwin, London, pp 129–163
  12. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.​1680/​geot.​1979.​29.​1.​47 View Article
  13. Deresiewicz H (1958) Mechanics of granular matter. Adv Appl Mech 5:233–306View Article
  14. Ding X, Zhang L (2011) Simulation of rock fracturing using particle flow modeling: phase I—model development and calibration. In: Paper presented at the 45th U.S. rock mechanics/geomechanics symposium, June 26–29, 2011, San Francisco, California
  15. Duffy JM, Mindlin RD (1957) Stress-strain relations and vibrations of a granular medium. J Appl Mech 25:585–593
  16. Fairhurst C, Hudson J (1999) Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int J Rock Mech Min Sci 36(2):279–289
  17. Fu Y (2005) Experimental quantification and DEM simulation of micro-macro behaviors of granular materials using X-ray tomography imaging. PhD thesis, Louisiana State University
  18. Griffith AA (1924) The theory of rupture. In: 1st international congress on applied mechanics, Delft, pp 55–63
  19. Hales TC (1998) An overview of the Kepler conjecture. ArXiv Mathematics e-prints. arXiv:math/9811078
  20. Hazzard JF, Young RP, Maxwell SC (2000) Micromechanical modeling of cracking and failure in brittle rocks. J Geophys Res B Solid Earth 105(B7):16683–16697View Article
  21. Heilbronner R, Keulen N (2006) Grain size and grain shape analysis of fault rocks. Tectonophysics 427(1–4):199–216View Article
  22. Holt R, Kjolaas J, Larsen I, Li L, Gotussopillitteri A, Sonstebo E (2005) Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock. Int J Rock Mech Min Sci 42(7–8):985–995. doi:10.​1016/​j.​ijrmms.​2005.​05.​006 View Article
  23. Homand-Etienne F, Hoxhaa D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22(2):135–151View Article
  24. Huang H (1999) Discrete element modeling of tool-rock interaction. PhD thesis, University of Minnesota, Minneapolis, MN
  25. ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, ISRM Commission on Standardization of Laboratory and Field Tests. Int J Rock Mech Min Sci 16:135–140
  26. Itasca (2004) PFC3D (particle flow code in 3 dimensions) manual. Version 4.0 edn. ICG, Minneapolis, Minnesota
  27. Jerier J-F, Richefeu V, Imbault D, Donzé F-V (2010) Packing spherical discrete elements for large scale simulations. Comput Meth Appl Mech Eng 199(25–28):1668–1676. doi:10.​1016/​j.​cma.​2010.​01.​016 View Article
  28. Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci 40(3):283–353. doi:10.​1016/​s1365-1609(03)00013-3 View Article
  29. Keulen N, Heilbronner R, Stünitz H, Boullier A-M, Ito H (2007) Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. J Struct Geol 29(8):1282–1300. doi:10.​1016/​j.​jsg.​2007.​04.​003 View Article
  30. Koyama T, Jing L (2007) Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng Anal Boundary Elem 31(5):458–472. doi:10.​1016/​j.​enganabound.​2006.​11.​009 View Article
  31. Kulatilake PHSW, Malama B, Wang J (2001) Physical and particle flow modeling of jointed rock block behavior under uniaxial loading. Int J Rock Mech Min Sci 38(5):641–657View Article
  32. Lajtai EZ, Bielus LP (1986) Stress corrosion cracking of Lac du Bonnet granite in tension and compression. Rock Mech Rock Eng 19:71–87View Article
  33. Lim S, Martin CD, Åkesson U (2012) In-situ stress and microcracking in granite cores with depth. Eng Geol 147:1–13View Article
  34. Madadi M, Tsoungui O, Lätzel M, Luding S (2004) On the fabric tensor of polydisperse granular materials in 2D. Int J Solids Struct 41(9–10):2563–2580View Article
  35. Mair K, Abe S (2008) 3D numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization. Earth Planet Sci Lett 274(1–2):72–81. doi:10.​1016/​j.​epsl.​2008.​07.​010 View Article
  36. Martin CD (1993) The strength of massive Lac du Bonnet granite around underground openings. PhD thesis, The University of Manitoba (Canada), Canada
  37. Martin CD, Chandler NA (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr 31(6):643–659. doi:10.​1016/​0148-9062(94)90005-1 View Article
  38. Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around a circular test tunnel. Int J Rock Mech Min Sci 34(7):1065–1073View Article
  39. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. doi:10.​1016/​j.​ijrmms.​2004.​09.​011 View Article
  40. Pretorius JPG, Se M (1972) Weakness correlation and the size effect in rock strength tests. J S Afr Inst Min Met 12:322–327
  41. Saint-Cyr B, Voivret C, Delenne J-Y, Radjai F, Sornay P (2009) Effect of shape nonconvexity on the shear strength of granular media. In: Powders and grains 2009, AIP conference proceedings, materials physics & applications, vol 1145. Golden, CO USA, pp 389–392
  42. Schöpfer MPJ, Childs C, Walsh JJ (2007) Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results. J Geophys Res 112(B10):B10401. doi:10.​1029/​2006jb004902 View Article
  43. Schöpfer MPJ, Abe S, Childs C, Walsh JJ (2009) The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modelling. Int J Rock Mech Min Sci 46(2):250–261View Article
  44. Walker T (2003) Granite grain size: not a problem for rapid cooling of plutons. J Creat 17(2):49–55
  45. Wang Y, Tonon F (2009) Modeling Lac du Bonnet granite using a discrete element model. Int J Rock Mech Min Sci 46(7):1124–1135View Article
  46. Wang Y, Tonon F (2010) Calibration of a discrete element model for intact rock up to its peak strength. Int J Numer Anal Methods Geomech 34(5):447–469. doi:10.​1002/​nag.​811 View Article
  47. Wichtmann T, Triantafyllidis T (2010) On the influence of the grain size distribution curve on P-wave velocity, constrained elastic modulus Mmax and Poisson’s ratio of quartz sands. Soil Dyn Earthq Eng 30(8):757–766. doi:10.​1016/​j.​soildyn.​2010.​03.​006 View Article
  48. Yan Y, Ji S (2010) Discrete element modeling of direct shear tests for a granular material. Int J Numer Anal Methods Geomech 34(9):978–990. doi:10.​1002/​nag.​848
  49. Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng Comput 23(6):607–631View Article
  50. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci 44:871–889View Article
  51. Zhang X-P, Wong L (2012) Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech Rock Eng 45(5):711–737. doi:10.​1007/​s00603-011-0176-z
  52. Zhang X-P, Wong L (2013) Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract 180(1):93–110View Article
  53. Zhang Q, Zhu H, Zhang L, Ding X (2011) Study of scale effect on intact rock strength using particle flow modeling. Int J Rock Mech Min Sci 48(8):1320–1328. doi:10.​1016/​j.​ijrmms.​2011.​09.​016 View Article
Metadaten
Titel
Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results
verfasst von
Xiaobin Ding
Lianyang Zhang
Hehua Zhu
Qi Zhang
Publikationsdatum
01.11.2014
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 6/2014
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-013-0533-1

Weitere Artikel der Ausgabe 6/2014

Rock Mechanics and Rock Engineering 6/2014 Zur Ausgabe