Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2018

05.02.2018

Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings

verfasst von: Guili Yin, Suiyuan Chen, Yuanyuan Liu, Jing Liang, Changsheng Liu, Zheng Kuang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.Q. Li, J.M. Han, Z.Y. Yang, and L.K. Pan, The Effect of Braking Energy on the Fatigue Crack Propagation in Railway Brake Discs, Eng. Fail. Anal., 2014, 44, p 272–284CrossRef Z.Q. Li, J.M. Han, Z.Y. Yang, and L.K. Pan, The Effect of Braking Energy on the Fatigue Crack Propagation in Railway Brake Discs, Eng. Fail. Anal., 2014, 44, p 272–284CrossRef
2.
Zurück zum Zitat Miha Pevec, Grega Oder, Iztok Potrcˇ, and Matjazˇ Šraml, Elevated Temperature Low Cycle Fatigue of Grey Cast Iron Used for Automotive Brake Discs, Eng. Fail. Anal., 2014, 42, p 221–230CrossRef Miha Pevec, Grega Oder, Iztok Potrcˇ, and Matjazˇ Šraml, Elevated Temperature Low Cycle Fatigue of Grey Cast Iron Used for Automotive Brake Discs, Eng. Fail. Anal., 2014, 42, p 221–230CrossRef
3.
Zurück zum Zitat Z.Q. Li, J.M. Han, W.J. Li, and L.K. Pan, Low Cycle Fatigue Behavior of Cr-Mo-V Low Alloy Steel Used for Railway Brake Discs, Mater. Design, 2014, 56, p 146–157CrossRef Z.Q. Li, J.M. Han, W.J. Li, and L.K. Pan, Low Cycle Fatigue Behavior of Cr-Mo-V Low Alloy Steel Used for Railway Brake Discs, Mater. Design, 2014, 56, p 146–157CrossRef
4.
Zurück zum Zitat Z.Q. Li, J.M. Han, Z.Y. Yang, and W.J. Li, Analyzing the Mechanisms of Thermal Fatigue and Phase Change of Steel Used in Brake Discs, Eng. Fail. Anal., 2015, 57, p 202–218CrossRef Z.Q. Li, J.M. Han, Z.Y. Yang, and W.J. Li, Analyzing the Mechanisms of Thermal Fatigue and Phase Change of Steel Used in Brake Discs, Eng. Fail. Anal., 2015, 57, p 202–218CrossRef
5.
Zurück zum Zitat W. Zhong, J.J. Hu, P. Shen, C.Y. Wang, and Q.Y. Liu, Experimental Investigation Between Rolling Contact Fatigue and Wear Of High-Speed and Heavy-Haul Railway and Selection of Rail Material, Wear, 2011, 271, p 2485–2493CrossRef W. Zhong, J.J. Hu, P. Shen, C.Y. Wang, and Q.Y. Liu, Experimental Investigation Between Rolling Contact Fatigue and Wear Of High-Speed and Heavy-Haul Railway and Selection of Rail Material, Wear, 2011, 271, p 2485–2493CrossRef
6.
Zurück zum Zitat S.C. Wu, S.Q. Zhang, and Z.W. Xu, Thermal Crack Growth-Based Fatigue Life Prediction Due to Braking for a High-Speed Railway Brake Disc, Int. J. Fatigue, 2016, 87, p 359–369CrossRef S.C. Wu, S.Q. Zhang, and Z.W. Xu, Thermal Crack Growth-Based Fatigue Life Prediction Due to Braking for a High-Speed Railway Brake Disc, Int. J. Fatigue, 2016, 87, p 359–369CrossRef
7.
Zurück zum Zitat T.J. Mackin, S.C. Noe, K.J. Ball, B.C. Bedell, D.P. Bim-Merle, M.C. Bingaman et al., Thermal Cracking in Disc Brakes, Eng. Fail. Anal., 2002, 9, p 63–76CrossRef T.J. Mackin, S.C. Noe, K.J. Ball, B.C. Bedell, D.P. Bim-Merle, M.C. Bingaman et al., Thermal Cracking in Disc Brakes, Eng. Fail. Anal., 2002, 9, p 63–76CrossRef
8.
Zurück zum Zitat D.J. Kim, Y.M. Lee, J.S. Park, and C.S. Seok, Thermal Stress Analysis for a Disk Brake of Railway vehicles with Consideration of the Pressure Distribution on a Frictional Surface, Mater. Sci. Eng. A, 2008, 483–484, p 456–459CrossRef D.J. Kim, Y.M. Lee, J.S. Park, and C.S. Seok, Thermal Stress Analysis for a Disk Brake of Railway vehicles with Consideration of the Pressure Distribution on a Frictional Surface, Mater. Sci. Eng. A, 2008, 483–484, p 456–459CrossRef
9.
Zurück zum Zitat S.C. Wu, S.Q. Zhang, Z.W. Xu, G.Z. Kang, and L.X. Cai, Cyclic Plastic Strain Based Damage Tolerance for Railway Axles in China, Int. J. Fatigue, 2016, 93, p 64–70CrossRef S.C. Wu, S.Q. Zhang, Z.W. Xu, G.Z. Kang, and L.X. Cai, Cyclic Plastic Strain Based Damage Tolerance for Railway Axles in China, Int. J. Fatigue, 2016, 93, p 64–70CrossRef
10.
Zurück zum Zitat S. Panier, P. Dufrénoy, and D. Weichert, An Experimental Investigation of Hot Spots in Railway Disc Brakes, Wear, 2004, 256, p 764–773CrossRef S. Panier, P. Dufrénoy, and D. Weichert, An Experimental Investigation of Hot Spots in Railway Disc Brakes, Wear, 2004, 256, p 764–773CrossRef
11.
Zurück zum Zitat F. Bagnoli, F. Dolce, and M. Bernabei, Thermal Fatigue Cracks of Fire Fighting Vehicles Gray Iron Brake Discs, Eng. Fail. Anal., 2009, 16, p 152–163CrossRef F. Bagnoli, F. Dolce, and M. Bernabei, Thermal Fatigue Cracks of Fire Fighting Vehicles Gray Iron Brake Discs, Eng. Fail. Anal., 2009, 16, p 152–163CrossRef
12.
Zurück zum Zitat N. Harada, M. Takuma, M. Tsujikawa, and K. Higashi, Effects of V Addition on Improvement of Heat Shock Resistance and Wear Resistance of Ni-Cr-Mo Cast Steel Brake Disc, Wear, 2013, 302, p 1444–1452CrossRef N. Harada, M. Takuma, M. Tsujikawa, and K. Higashi, Effects of V Addition on Improvement of Heat Shock Resistance and Wear Resistance of Ni-Cr-Mo Cast Steel Brake Disc, Wear, 2013, 302, p 1444–1452CrossRef
13.
Zurück zum Zitat K. Liu, Y.J. Li, J. Wang, and Q.S. Ma, In-Situ Synthesized Ni-Zr Intermetallic/Ceramic Reinforced Composite Coatings on Zirconium Substrate by High Power Diode Laser, J. Alloys Compd., 2015, 624, p 234–240CrossRef K. Liu, Y.J. Li, J. Wang, and Q.S. Ma, In-Situ Synthesized Ni-Zr Intermetallic/Ceramic Reinforced Composite Coatings on Zirconium Substrate by High Power Diode Laser, J. Alloys Compd., 2015, 624, p 234–240CrossRef
14.
Zurück zum Zitat L.N. Zhu, B.S. Xu, H.D. Wang, and C.B. Wang, Microstructure and Nanoindentation Measurement of Residual Stress in Fe-Based Coating by Laser Cladding, J. Mater. Sci., 2012, 47, p 2122–2126CrossRef L.N. Zhu, B.S. Xu, H.D. Wang, and C.B. Wang, Microstructure and Nanoindentation Measurement of Residual Stress in Fe-Based Coating by Laser Cladding, J. Mater. Sci., 2012, 47, p 2122–2126CrossRef
15.
Zurück zum Zitat H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu, Microstructure and Properties of Fe-Based Composite Coating by Laser Cladding Fe-Ti-V-Cr-C-CeO2 Powder, Opt. Laser Technol., 2015, 65, p 119–125CrossRef H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu, Microstructure and Properties of Fe-Based Composite Coating by Laser Cladding Fe-Ti-V-Cr-C-CeO2 Powder, Opt. Laser Technol., 2015, 65, p 119–125CrossRef
16.
Zurück zum Zitat A. Emamian, S.F. Corbin, and A. Khajepour, Effect of Laser Cladding Process Parameters on Clad Quality and In-Situ Formed Microstructure of Fe-TiC Composite Coatings, Surf. Coat. Technol., 2010, 205, p 2007–2015CrossRef A. Emamian, S.F. Corbin, and A. Khajepour, Effect of Laser Cladding Process Parameters on Clad Quality and In-Situ Formed Microstructure of Fe-TiC Composite Coatings, Surf. Coat. Technol., 2010, 205, p 2007–2015CrossRef
17.
Zurück zum Zitat Q. Wu, W. Li, N. Zhong, G. Wu, and H. Wang, Microstructure and Wear Behavior of Laser Cladding VC-Cr2C3 Ceramic Coating on Steel Substrate, Mater. Des., 2013, 49, p 10–18CrossRef Q. Wu, W. Li, N. Zhong, G. Wu, and H. Wang, Microstructure and Wear Behavior of Laser Cladding VC-Cr2C3 Ceramic Coating on Steel Substrate, Mater. Des., 2013, 49, p 10–18CrossRef
18.
Zurück zum Zitat A. Slocombe and L. Li, Selective Laser Sintering of TiC-Al2O3 Composite with Self-propagating High-Temperature Synthesis, J. Mater. Process. Technol., 2001, 118, p 173–178CrossRef A. Slocombe and L. Li, Selective Laser Sintering of TiC-Al2O3 Composite with Self-propagating High-Temperature Synthesis, J. Mater. Process. Technol., 2001, 118, p 173–178CrossRef
19.
Zurück zum Zitat C.W. Yao, J. Huang, P.L. Zhang, Z.G. Li, and Y.X. Wu, Toughening of Fe-Based Laser-Clad Alloy Coating, Appl. Surf. Sci., 2011, 257, p 2184–2192CrossRef C.W. Yao, J. Huang, P.L. Zhang, Z.G. Li, and Y.X. Wu, Toughening of Fe-Based Laser-Clad Alloy Coating, Appl. Surf. Sci., 2011, 257, p 2184–2192CrossRef
20.
Zurück zum Zitat H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu, Microstructures and Properties of Low-Chromium High Corrosion-Resistant TiC-VC Reinforced Fe-Based Laser Cladding Layer, J. Alloys Compd., 2015, 622, p 62–68CrossRef H. Zhang, Y. Zou, Z.D. Zou, and D.T. Wu, Microstructures and Properties of Low-Chromium High Corrosion-Resistant TiC-VC Reinforced Fe-Based Laser Cladding Layer, J. Alloys Compd., 2015, 622, p 62–68CrossRef
21.
Zurück zum Zitat V. Ocelík, U. de Oliveira, M. de Boer, and JThM de Hosson, Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coatings Properties, Surf. Coat. Technol., 2007, 201, p 5875–5883CrossRef V. Ocelík, U. de Oliveira, M. de Boer, and JThM de Hosson, Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coatings Properties, Surf. Coat. Technol., 2007, 201, p 5875–5883CrossRef
22.
Zurück zum Zitat X.H. Wang, J.X. Kuang, and H.L. He, Effect of Cerium Dioxide on the Structure and Wear-Resistance of Laser Cladding Ni-Based Cermet Composite Coating, J. Mater. Prot., 2009, 42, p 13–15 X.H. Wang, J.X. Kuang, and H.L. He, Effect of Cerium Dioxide on the Structure and Wear-Resistance of Laser Cladding Ni-Based Cermet Composite Coating, J. Mater. Prot., 2009, 42, p 13–15
23.
Zurück zum Zitat M. Aghasibeig and H. Fredriksson, Laser Cladding of a Featureless Iron-Based Alloy, Surf. Coat. Technol., 2012, 209, p 32–37CrossRef M. Aghasibeig and H. Fredriksson, Laser Cladding of a Featureless Iron-Based Alloy, Surf. Coat. Technol., 2012, 209, p 32–37CrossRef
24.
Zurück zum Zitat S.H. Zhang, M.X. Li, T.Y. Cho, J.H. Yoon, C.G. Lee, and Y.Z. He, Laser Clad Ni-Base Alloy Added Nano- and Micron-Size CeO2 Composites, Opt. Laser Technol., 2008, 40, p 716–722CrossRef S.H. Zhang, M.X. Li, T.Y. Cho, J.H. Yoon, C.G. Lee, and Y.Z. He, Laser Clad Ni-Base Alloy Added Nano- and Micron-Size CeO2 Composites, Opt. Laser Technol., 2008, 40, p 716–722CrossRef
25.
Zurück zum Zitat X.Y. Cheng, X.B. Xie, and S. Jiang, Influence of Lanthanum on Tribological Properties and Microstructure of Laser Clad B+ Fe+ Si Composite Coatings, J. Rare Earths, 2004, 22, p 687–690 X.Y. Cheng, X.B. Xie, and S. Jiang, Influence of Lanthanum on Tribological Properties and Microstructure of Laser Clad B+ Fe+ Si Composite Coatings, J. Rare Earths, 2004, 22, p 687–690
26.
Zurück zum Zitat Y.H. Zhao, J. Sun, and J.F. Li, Effect of Rare Earth Oxide on the Properties of Laser Cladding Layer and Machining Vibration Suppressing in Side Milling, Appl. Surf. Sci., 2014, 321, p 387–395CrossRef Y.H. Zhao, J. Sun, and J.F. Li, Effect of Rare Earth Oxide on the Properties of Laser Cladding Layer and Machining Vibration Suppressing in Side Milling, Appl. Surf. Sci., 2014, 321, p 387–395CrossRef
27.
Zurück zum Zitat L. Ding and S.S. Hu, Effect of Nano-CeO2 on Microstructure and Wear Resistance of Co-Based Coatings, Surf. Coat. Technol., 2007, 276, p 565–572CrossRef L. Ding and S.S. Hu, Effect of Nano-CeO2 on Microstructure and Wear Resistance of Co-Based Coatings, Surf. Coat. Technol., 2007, 276, p 565–572CrossRef
28.
Zurück zum Zitat L. Ding, H.Y. Jiang, and M.X. Li, Hardness and Wear Resistance of Laser Cladding Nano-Sm2O3/Co-Based Alloy Coatings, Spec. Cast. Nonferrous Alloys, 2013, 33, p 805–812 L. Ding, H.Y. Jiang, and M.X. Li, Hardness and Wear Resistance of Laser Cladding Nano-Sm2O3/Co-Based Alloy Coatings, Spec. Cast. Nonferrous Alloys, 2013, 33, p 805–812
29.
Zurück zum Zitat C.F. Wu, M.X. Ma, W.J. Liu, M.S. Zhong, H.J. Zhang, and W.M. Zhang, Laser Cladding In-Situ Carbide Particle Reinforced Fe-Based Composite Coatings with Rare Earth Oxide Addition, J. Rare Earths, 2009, 27, p 997–1002CrossRef C.F. Wu, M.X. Ma, W.J. Liu, M.S. Zhong, H.J. Zhang, and W.M. Zhang, Laser Cladding In-Situ Carbide Particle Reinforced Fe-Based Composite Coatings with Rare Earth Oxide Addition, J. Rare Earths, 2009, 27, p 997–1002CrossRef
30.
Zurück zum Zitat Y.G. Yan, M.X. Li, and S.H. Zhang, Effect of Nano-CeO2 on Microstructure and Corrosion Resistance of Ni-Based Alloy Coating by Laser Melting, J. Chin. Rare Earth. Soc., 2007, 25, p 620–624 Y.G. Yan, M.X. Li, and S.H. Zhang, Effect of Nano-CeO2 on Microstructure and Corrosion Resistance of Ni-Based Alloy Coating by Laser Melting, J. Chin. Rare Earth. Soc., 2007, 25, p 620–624
31.
Zurück zum Zitat M.X. Li, Y.Z. He, and X.M. Yuan, Effect of Nano-Y2O3 on Microstructure of Laser Cladding Cobalt-Based Alloy Coatings, Appl. Surf. Sci., 2006, 252, p 2882–2887CrossRef M.X. Li, Y.Z. He, and X.M. Yuan, Effect of Nano-Y2O3 on Microstructure of Laser Cladding Cobalt-Based Alloy Coatings, Appl. Surf. Sci., 2006, 252, p 2882–2887CrossRef
32.
Zurück zum Zitat R.L. Bao, H.J. Yu, C.Z. Chen, and Q. Dong, The effect of Rare Earth on the Structure and Performance of Laser Clad Coatings, Surf. Rev. Lett., 2006, 13, p 509–517CrossRef R.L. Bao, H.J. Yu, C.Z. Chen, and Q. Dong, The effect of Rare Earth on the Structure and Performance of Laser Clad Coatings, Surf. Rev. Lett., 2006, 13, p 509–517CrossRef
33.
Zurück zum Zitat K.L. Wang, Q.B. Zhang, and M.L. Sun, Rare Earth Elements Modification of Laser-Clad Nickel-Based Alloy Coatings, Appl. Surf. Sci., 2001, 174, p 191–200CrossRef K.L. Wang, Q.B. Zhang, and M.L. Sun, Rare Earth Elements Modification of Laser-Clad Nickel-Based Alloy Coatings, Appl. Surf. Sci., 2001, 174, p 191–200CrossRef
34.
Zurück zum Zitat Z.B. Sun, X.P. Song, Z.D. Hu, G.Y. Liang, S. Yang, and R.F. Cochrane, Effects of Rare Earth Additions on GMR of Melt-Spun Cu-Co-Ni Ribbons, J. Magn. Magn. Mate., 2001, 234, p 279–283CrossRef Z.B. Sun, X.P. Song, Z.D. Hu, G.Y. Liang, S. Yang, and R.F. Cochrane, Effects of Rare Earth Additions on GMR of Melt-Spun Cu-Co-Ni Ribbons, J. Magn. Magn. Mate., 2001, 234, p 279–283CrossRef
35.
Zurück zum Zitat T.B. Massalski, P.R. Subramanian, and H. Okamoto, Ed., Binary Alloy Phase Diagrams File, 2nd ed., ASM International Materials Park, Ohio, 1996 T.B. Massalski, P.R. Subramanian, and H. Okamoto, Ed., Binary Alloy Phase Diagrams File, 2nd ed., ASM International Materials Park, Ohio, 1996
36.
Zurück zum Zitat J. Yang, D. Li, and X. Wang, Synthesis and Microstructural Control of Nanocrystalline Titania Powder via a Stearic Acid Method, Mater. Sci. Eng. A, 2002, 328, p 108–114CrossRef J. Yang, D. Li, and X. Wang, Synthesis and Microstructural Control of Nanocrystalline Titania Powder via a Stearic Acid Method, Mater. Sci. Eng. A, 2002, 328, p 108–114CrossRef
37.
Zurück zum Zitat W. Li, B. Inkson, Z. Horita, and K. Xia, Microstructure Observations in Rare Earth Element Gd-Modified Ti-44 at.% Al, Intermetallics, 2000, 8, p 519–523CrossRef W. Li, B. Inkson, Z. Horita, and K. Xia, Microstructure Observations in Rare Earth Element Gd-Modified Ti-44 at.% Al, Intermetallics, 2000, 8, p 519–523CrossRef
38.
Zurück zum Zitat G. Li, X. Qiu, L. Qiu, J. Kuang, and J. Xiang, Study on Properties of NiCrBSiC Alloy Large Area Laser Cladding, Metall. Gical. Anal., 2008, 28, p 39–42 G. Li, X. Qiu, L. Qiu, J. Kuang, and J. Xiang, Study on Properties of NiCrBSiC Alloy Large Area Laser Cladding, Metall. Gical. Anal., 2008, 28, p 39–42
39.
Zurück zum Zitat X.H. Cheng and C.Y. Xie, Effect of Rare Earth Elements on the Erosion Resistance of Nitrided 40Cr Steel, Wear, 2003, 254, p 415–420CrossRef X.H. Cheng and C.Y. Xie, Effect of Rare Earth Elements on the Erosion Resistance of Nitrided 40Cr Steel, Wear, 2003, 254, p 415–420CrossRef
40.
Zurück zum Zitat B. Han, M.Y. Li, and Y. Wang, Microstructure and Wear Resistance of Laser Clad Fe-Cr3C2 Composite Coating on 35CrMo Steel, J. Mater. Eng. Perform., 2013, 22, p 3749–3754CrossRef B. Han, M.Y. Li, and Y. Wang, Microstructure and Wear Resistance of Laser Clad Fe-Cr3C2 Composite Coating on 35CrMo Steel, J. Mater. Eng. Perform., 2013, 22, p 3749–3754CrossRef
41.
Zurück zum Zitat A. Zikin, I. Hussainova, C. Katsich, E. Badisch, and C. Tomastik, Advanced Chromium Carbide-Based Hardfacings, Surf. Coat. Technol., 2012, 206, p 4270–4278CrossRef A. Zikin, I. Hussainova, C. Katsich, E. Badisch, and C. Tomastik, Advanced Chromium Carbide-Based Hardfacings, Surf. Coat. Technol., 2012, 206, p 4270–4278CrossRef
42.
Zurück zum Zitat Y.L. Yuan and Z.G. Li, Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7 C3 Composite Coating Fabricated by PTA Welding Process, J. Mater. Eng. Perform., 2013, 22, p 3439–3449CrossRef Y.L. Yuan and Z.G. Li, Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr, Fe)7 C3 Composite Coating Fabricated by PTA Welding Process, J. Mater. Eng. Perform., 2013, 22, p 3439–3449CrossRef
43.
Zurück zum Zitat H. Winkelmann, E. Badisch, M. Kirchgaßner, and H. Danninger, Wear Mechanisms at High Temperatures. Part 1: Wear Mechanisms of Different Fe-Based Alloys at Elevated Temperatures, Tribol. Lett., 2009, 34, p 155–166CrossRef H. Winkelmann, E. Badisch, M. Kirchgaßner, and H. Danninger, Wear Mechanisms at High Temperatures. Part 1: Wear Mechanisms of Different Fe-Based Alloys at Elevated Temperatures, Tribol. Lett., 2009, 34, p 155–166CrossRef
44.
Zurück zum Zitat J. Li, G.J. Li, and X. Luo, Effect of Y2O3 on Cracking Susceptibility of Laser-Clad Ti-Based Composites Coatings, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2014, 29, p 1011–1018CrossRef J. Li, G.J. Li, and X. Luo, Effect of Y2O3 on Cracking Susceptibility of Laser-Clad Ti-Based Composites Coatings, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2014, 29, p 1011–1018CrossRef
45.
Zurück zum Zitat X.H. Wang, Z.D. Zou, S.L. Song, and S.Y. Qu, Modifying Effect of Rare Earth La2O3 on the Fe-C-Cr-Si-B Laser Clad Coatings, J. Mater. Sci. Lett., 2003, 22, p 713–715CrossRef X.H. Wang, Z.D. Zou, S.L. Song, and S.Y. Qu, Modifying Effect of Rare Earth La2O3 on the Fe-C-Cr-Si-B Laser Clad Coatings, J. Mater. Sci. Lett., 2003, 22, p 713–715CrossRef
Metadaten
Titel
Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings
verfasst von
Guili Yin
Suiyuan Chen
Yuanyuan Liu
Jing Liang
Changsheng Liu
Zheng Kuang
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2949-3

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Engineering and Performance 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.