Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Effect of Porosity on Thermal Performance of Plastic Injection Molds Based on Experimental and Numerically Derived Material Properties

verfasst von : Suchana A. Jahan, Tong Wu, Yi Zhang, Jing Zhang, Andres Tovar, Hazim El-Mounayri

Erschienen in: Mechanics of Additive and Advanced Manufacturing, Volume 9

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plastic injection molding industry uses traditionally machined tools and dies to manufacture various sizes and shapes of plastic products. With the advent of advanced manufacturing technology and expanding global competition in business, it is necessary to provide innovative solutions to the injection molding industry to sustain their business. Typically, the cooling time comprises more than half of the overall injection molding cycle time. The application of additive manufacturing technique can provide a solution to reduce the cooling time in injection molding process. The potential of 3D printing technology to produce any size and shape of products using metal powders provides an opportunity to design and produce innovative injection molding tools, which is unattainable by traditional machining process. Though the conformal cooling channels are capable of reducing the cooling time significantly, the cost of manufacturing the injection molds by 3D printing is quite high and hence a crucial decision making factor for the mold designers about whether or not to go for the 3D printed molds. By making the molds porous, it is possible to reduce the cost of additive manufacturing, thus creating a positive impact on the use of 3D printed molds in injection molding business. In this paper, the effect of mold porosity on the thermal performance of the injection molds are studied. The properties of 3D printed mold material and traditional mold material is quite different and have been considered for the analysis. An optimization study has been conducted to identify the best possible design solution in terms of thermal and printing cost perspectives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosato, D.V., Rosato, M.G.: Injection Molding Handbook. Springer Science & Business Media, New York (2012) Rosato, D.V., Rosato, M.G.: Injection Molding Handbook. Springer Science & Business Media, New York (2012)
2.
Zurück zum Zitat Zheng, R., Tanner, R.I., Fan, X.-J.: Injection Molding: Integration of Theory and Modeling Methods. Springer Science & Business Media, Berlin (2011)CrossRef Zheng, R., Tanner, R.I., Fan, X.-J.: Injection Molding: Integration of Theory and Modeling Methods. Springer Science & Business Media, Berlin (2011)CrossRef
3.
Zurück zum Zitat Dimla, D., Camilotto, M., Miani, F.: Design and optimisation of conformal cooling channels in injection moulding tools. J. Mater. Process. Technol. 164, 1294–1300 (2005)CrossRef Dimla, D., Camilotto, M., Miani, F.: Design and optimisation of conformal cooling channels in injection moulding tools. J. Mater. Process. Technol. 164, 1294–1300 (2005)CrossRef
4.
Zurück zum Zitat Sachs, E., et al.: Progress on tooling by 3D printing; conformal cooling, dimensional control, surface finish and hardness. In: Proceedings of the Eighth Annual Solid Freeform Fabrication Symposium, Austin (1997) Sachs, E., et al.: Progress on tooling by 3D printing; conformal cooling, dimensional control, surface finish and hardness. In: Proceedings of the Eighth Annual Solid Freeform Fabrication Symposium, Austin (1997)
5.
Zurück zum Zitat Sachs, E., et al.: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40(5), 1232–1247 (2000)CrossRef Sachs, E., et al.: Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym. Eng. Sci. 40(5), 1232–1247 (2000)CrossRef
6.
Zurück zum Zitat Xu, R.X., Sachs, E.: Rapid thermal cycling with low thermal inertia tools. Polym. Eng. Sci. 49(2), 305–316 (2009)CrossRef Xu, R.X., Sachs, E.: Rapid thermal cycling with low thermal inertia tools. Polym. Eng. Sci. 49(2), 305–316 (2009)CrossRef
7.
Zurück zum Zitat Xu, X., Sachs, E., Allen, S.: The design of conformal cooling channels in injection molding tooling. Polym. Eng. Sci. 41(7), 1265–1279 (2001)CrossRef Xu, X., Sachs, E., Allen, S.: The design of conformal cooling channels in injection molding tooling. Polym. Eng. Sci. 41(7), 1265–1279 (2001)CrossRef
8.
Zurück zum Zitat Xu, X., et al.: Designing conformal cooling channels for tooling. In: Solid Freeform Fabrication Proceedings (1998) Xu, X., et al.: Designing conformal cooling channels for tooling. In: Solid Freeform Fabrication Proceedings (1998)
9.
Zurück zum Zitat Ferreira, J., Mateus, A.: Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J. Mater. Process. Technol. 142(2), 508–516 (2003)CrossRef Ferreira, J., Mateus, A.: Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J. Mater. Process. Technol. 142(2), 508–516 (2003)CrossRef
10.
Zurück zum Zitat Meckley, J., Edwards, R.: A study on the design and effectiveness of conformal cooling channels in rapid tooling inserts. Technol. Interface J. 10(1), 1–28 (2009) Meckley, J., Edwards, R.: A study on the design and effectiveness of conformal cooling channels in rapid tooling inserts. Technol. Interface J. 10(1), 1–28 (2009)
11.
Zurück zum Zitat Hopkinson, N., Dickens, P.: Conformal cooling and heating channels using laser sintered tools. In: Solid Freeform Fabrication Conference, Texas (2000) Hopkinson, N., Dickens, P.: Conformal cooling and heating channels using laser sintered tools. In: Solid Freeform Fabrication Conference, Texas (2000)
12.
Zurück zum Zitat Altaf, K., Rani, A. M. A., Raghavan, V.R.: Fabrication of circular and profiled conformal cooling channels in aluminum filled epoxy injection mould tools. In: National Postgraduate Conference (NPC), IEEE (2011) Altaf, K., Rani, A. M. A., Raghavan, V.R.: Fabrication of circular and profiled conformal cooling channels in aluminum filled epoxy injection mould tools. In: National Postgraduate Conference (NPC), IEEE (2011)
13.
Zurück zum Zitat Saifullah, A., Masood, S.: Finite Element Thermal Analysis of Conformal Cooling Channels in Injection Moulding. Engineers Australia, Brisbane (2007) Saifullah, A., Masood, S.: Finite Element Thermal Analysis of Conformal Cooling Channels in Injection Moulding. Engineers Australia, Brisbane (2007)
14.
Zurück zum Zitat Saifullah, A., Masood, S., Sbarski, I.: New cooling channel design for injection moulding. In: Proceedings of the World Congress on Engineering (2009) Saifullah, A., Masood, S., Sbarski, I.: New cooling channel design for injection moulding. In: Proceedings of the World Congress on Engineering (2009)
15.
Zurück zum Zitat Saifullah, A., Masood, S., Sbarski, I.: Thermal–structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 62(1–4), 123–133 (2012)CrossRef Saifullah, A., Masood, S., Sbarski, I.: Thermal–structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 62(1–4), 123–133 (2012)CrossRef
16.
Zurück zum Zitat Saifullah, A., Masood, S.H.: Optimum cooling channels design and thermal analysis of an Injection moulded plastic part mould. In: Materials Science Forum. Trans Tech Publications, Aedermannsdorf (2007) Saifullah, A., Masood, S.H.: Optimum cooling channels design and thermal analysis of an Injection moulded plastic part mould. In: Materials Science Forum. Trans Tech Publications, Aedermannsdorf (2007)
17.
Zurück zum Zitat Au, K., Yu, K.: A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int. J. Adv. Manuf. Technol. 34(5–6), 496–515 (2007)CrossRef Au, K., Yu, K.: A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int. J. Adv. Manuf. Technol. 34(5–6), 496–515 (2007)CrossRef
18.
Zurück zum Zitat Au, K., Yu, K.: Variable distance adjustment for conformal cooling channel design in rapid tool. J. Manuf. Sci. Eng. 136(4), 044501 (2014)CrossRef Au, K., Yu, K.: Variable distance adjustment for conformal cooling channel design in rapid tool. J. Manuf. Sci. Eng. 136(4), 044501 (2014)CrossRef
19.
Zurück zum Zitat Au, K., Yu, K., Chiu, W.: Visibility-based conformal cooling channel generation for rapid tooling. Comput. Aided Des. 43(4), 356–373 (2011)CrossRef Au, K., Yu, K., Chiu, W.: Visibility-based conformal cooling channel generation for rapid tooling. Comput. Aided Des. 43(4), 356–373 (2011)CrossRef
20.
Zurück zum Zitat ó Gloinn, T., et al.: FEA simulation of conformal cooling within injection moulds. Int. J. Manuf. Res. 2(2), 162–170 (2007)CrossRef ó Gloinn, T., et al.: FEA simulation of conformal cooling within injection moulds. Int. J. Manuf. Res. 2(2), 162–170 (2007)CrossRef
21.
Zurück zum Zitat Park, H.S., Pham, N.H.: Automatically generating conformal cooling channel design for plastic injection molding. Ann. DAAAM Proc. 539–541 (2007) Park, H.S., Pham, N.H.: Automatically generating conformal cooling channel design for plastic injection molding. Ann. DAAAM Proc. 539–541 (2007)
22.
Zurück zum Zitat Park, H.-S., Pham, N.H.: Design of conformal cooling channels for an automotive part. Int. J. Automot. Technol. 10(1), 87–93 (2009)CrossRef Park, H.-S., Pham, N.H.: Design of conformal cooling channels for an automotive part. Int. J. Automot. Technol. 10(1), 87–93 (2009)CrossRef
23.
Zurück zum Zitat Wang, Y., et al.: Automatic design of conformal cooling circuits for rapid tooling. Comput. Aided Des. 43(8), 1001–1010 (2011)CrossRef Wang, Y., et al.: Automatic design of conformal cooling circuits for rapid tooling. Comput. Aided Des. 43(8), 1001–1010 (2011)CrossRef
24.
Zurück zum Zitat Jahan, S.A.: Optimization of conformal cooling channels in 3D printed plastic injection molds (2016) Jahan, S.A.: Optimization of conformal cooling channels in 3D printed plastic injection molds (2016)
25.
Zurück zum Zitat Jahan, S.A., El-Mounayri, H.: Optimal Conformal Cooling Channels in 3D Printed Dies for Plastic Injection Molding. Procedia Manuf. 5, 888–900 (2016, in press) Jahan, S.A., El-Mounayri, H.: Optimal Conformal Cooling Channels in 3D Printed Dies for Plastic Injection Molding. Procedia Manuf. 5, 888–900 (2016, in press)
26.
Zurück zum Zitat Jahan, S. A., et al.: Implementation of conformal cooling & topology optimization in 3D printed stainless steel porous structure injection molds. Procedia Manuf. 5, 901–915 (2016, in press) Jahan, S. A., et al.: Implementation of conformal cooling & topology optimization in 3D printed stainless steel porous structure injection molds. Procedia Manuf. 5, 901–915 (2016, in press)
27.
Zurück zum Zitat Wu, T., et al.: A framework for optimizing the design of injection molds with conformal cooling for additive manufacturing. Procedia Manuf. 1, 404–415 (2015)CrossRef Wu, T., et al.: A framework for optimizing the design of injection molds with conformal cooling for additive manufacturing. Procedia Manuf. 1, 404–415 (2015)CrossRef
28.
Zurück zum Zitat Isaacs, A., et al.: Thermal Modeling of a LightWeight Porous Structure (in press) Isaacs, A., et al.: Thermal Modeling of a LightWeight Porous Structure (in press)
Metadaten
Titel
Effect of Porosity on Thermal Performance of Plastic Injection Molds Based on Experimental and Numerically Derived Material Properties
verfasst von
Suchana A. Jahan
Tong Wu
Yi Zhang
Jing Zhang
Andres Tovar
Hazim El-Mounayri
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62834-9_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.