Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2014

01.10.2014

Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

verfasst von: D. K. Yaduwanshi, S. Bag, S. Pal

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, Dec. 1991, U.S. Patent No. 5,460,317. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, Dec. 1991, U.S. Patent No. 5,460,317.
2.
Zurück zum Zitat C.M. Chen and R. Kovacevic, Thermomechanical Modeling and Force Analysis of Friction Stir Welding by Finite Element method, Proc. Inst. Mech. Eng. C, 2004, 218, p 509–519CrossRef C.M. Chen and R. Kovacevic, Thermomechanical Modeling and Force Analysis of Friction Stir Welding by Finite Element method, Proc. Inst. Mech. Eng. C, 2004, 218, p 509–519CrossRef
3.
Zurück zum Zitat P. Sinclair, W. Longhurst, C. Cox, D. Lammlein, A. Strauss, and G. Cook, Heated Friction Stir Welding: An Experimental and Theoretical Investigation into How Preheating Influences on Process Forces, J. Mater. Process. Manuf., 2010, 25, p 1283–1290CrossRef P. Sinclair, W. Longhurst, C. Cox, D. Lammlein, A. Strauss, and G. Cook, Heated Friction Stir Welding: An Experimental and Theoretical Investigation into How Preheating Influences on Process Forces, J. Mater. Process. Manuf., 2010, 25, p 1283–1290CrossRef
4.
Zurück zum Zitat S. Kou and G. Cao, ARC-Enhanced Friction Stir Welding, International Patent Application No. 10/970,058, Jul. 2006, U.S. Patent No. 7,078,647. S. Kou and G. Cao, ARC-Enhanced Friction Stir Welding, International Patent Application No. 10/970,058, Jul. 2006, U.S. Patent No. 7,078,647.
5.
Zurück zum Zitat E. Scutelnicu, D. Birsan, and R. Cojocaru, Research on Friction Stir Welding and Tungsten Inert Gas Assisted Friction Stir Welding of Copper, Proceedings of the 4th International Conference on Manufacturing Engineering, Quality and Production Systems, Recent Advanced Manufacturing Engineering, Spain, 2011, p 97–102. E. Scutelnicu, D. Birsan, and R. Cojocaru, Research on Friction Stir Welding and Tungsten Inert Gas Assisted Friction Stir Welding of Copper, Proceedings of the 4th International Conference on Manufacturing Engineering, Quality and Production Systems, Recent Advanced Manufacturing Engineering, Spain, 2011, p 97–102.
6.
Zurück zum Zitat H. Bang, H. Bang, G. Jeon, I. Oh, and C. Ro, Gas Tungsten Arc Welding Assisted Hybrid Friction Stir Welding of Dissimilar Materials Al6061-T6 Aluminum Alloy and STS304 Stainless Steel, Mater. Des., 2012, 37, p 48–55CrossRef H. Bang, H. Bang, G. Jeon, I. Oh, and C. Ro, Gas Tungsten Arc Welding Assisted Hybrid Friction Stir Welding of Dissimilar Materials Al6061-T6 Aluminum Alloy and STS304 Stainless Steel, Mater. Des., 2012, 37, p 48–55CrossRef
7.
Zurück zum Zitat W.A. Ferrando, The Concept of Electrically Assisted Friction Stir Welding and Application to the Processing of Various Metals, Naval Surface Warfare Center Carderock Division, Maryland, 2008, p 8–98 W.A. Ferrando, The Concept of Electrically Assisted Friction Stir Welding and Application to the Processing of Various Metals, Naval Surface Warfare Center Carderock Division, Maryland, 2008, p 8–98
8.
Zurück zum Zitat X. Long and S.K. Khanna, Modeling of Electrically Enhanced Friction Stir Welding Process Using Finite Element Method, Sci. Technol. Weld. Join., 2005, 10, p 482–487CrossRef X. Long and S.K. Khanna, Modeling of Electrically Enhanced Friction Stir Welding Process Using Finite Element Method, Sci. Technol. Weld. Join., 2005, 10, p 482–487CrossRef
10.
Zurück zum Zitat S. Riichi, T. Takehiko, H. Susumu, Y. Naoki, and K. Yuuta, On Pre-heating Effect for Friction Stir Welding of Aluminum Alloy—A Feasibility Study of Friction Stir Welding with Heating of Aluminum Alloy (Report 1), J. Jpn. Weld. Soc., 2006, 24, p 281–286CrossRef S. Riichi, T. Takehiko, H. Susumu, Y. Naoki, and K. Yuuta, On Pre-heating Effect for Friction Stir Welding of Aluminum Alloy—A Feasibility Study of Friction Stir Welding with Heating of Aluminum Alloy (Report 1), J. Jpn. Weld. Soc., 2006, 24, p 281–286CrossRef
11.
Zurück zum Zitat F. Palm, Laser Supported Friction Stir Welding Method, International Patent Application No. US 10/333,830, 21 Sep. 2004, U.S. Patent No. US6793118 B2. F. Palm, Laser Supported Friction Stir Welding Method, International Patent Application No. US 10/333,830, 21 Sep. 2004, U.S. Patent No. US6793118 B2.
12.
Zurück zum Zitat M. Merklein and A. Giera, Laser Assisted Friction Stir Welding of Drawable Steel-Aluminium Tailored Hybrids, The 11th International Conference on Numerical Methods in Industrial Forming Processes, CAS, Beijing, 2008, p 1299–1305. M. Merklein and A. Giera, Laser Assisted Friction Stir Welding of Drawable Steel-Aluminium Tailored Hybrids, The 11th International Conference on Numerical Methods in Industrial Forming Processes, CAS, Beijing, 2008, p 1299–1305.
13.
Zurück zum Zitat C. Woong-Seong, S.R. Rajesh, C. Chang-Keun, and K. Heung-Ju, Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding Between AA6061-T6 Al Alloy and AZ31 Mg Alloy, J. Mater. Sci. Technol., 2011, 27, p 199–204CrossRef C. Woong-Seong, S.R. Rajesh, C. Chang-Keun, and K. Heung-Ju, Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding Between AA6061-T6 Al Alloy and AZ31 Mg Alloy, J. Mater. Sci. Technol., 2011, 27, p 199–204CrossRef
14.
Zurück zum Zitat M.F. Zaeh, P. Gebhard, S. Huber, and M. Ruhstorfer, Bifocal Hybrid Laser Beam Welding and Friction Stir Welding of Aluminum Extrusion Components, Adv. Mater. Res., 2008, 43, p 69–80CrossRef M.F. Zaeh, P. Gebhard, S. Huber, and M. Ruhstorfer, Bifocal Hybrid Laser Beam Welding and Friction Stir Welding of Aluminum Extrusion Components, Adv. Mater. Res., 2008, 43, p 69–80CrossRef
15.
Zurück zum Zitat K. Feldman, G. Kohn, and A. Stern, On Laser Assisted Friction Stir Welding, Proceedings of Welding Conference, AWS, Herzelia, 2006, p 21–25 K. Feldman, G. Kohn, and A. Stern, On Laser Assisted Friction Stir Welding, Proceedings of Welding Conference, AWS, Herzelia, 2006, p 21–25
16.
Zurück zum Zitat A. Murphy, F. Lynch, M. Price, and A. Gibson, Modified Stiffened Panel Analysis Methods for Laser Beam and Friction Stir Welded Aircraft Panels, J. Aerosp. Eng. Proc. IMechE G, 2008, 220, p 81–88 A. Murphy, F. Lynch, M. Price, and A. Gibson, Modified Stiffened Panel Analysis Methods for Laser Beam and Friction Stir Welded Aircraft Panels, J. Aerosp. Eng. Proc. IMechE G, 2008, 220, p 81–88
17.
Zurück zum Zitat G. Casalino, S. Campanelli, A.D. Ludovico, N. Contuzzi, and A. Angelastro, Study of a Fiber Laser Assisted Friction Stir Welding Process, Proc. SPIE, 2012, 8239, p 13–18 G. Casalino, S. Campanelli, A.D. Ludovico, N. Contuzzi, and A. Angelastro, Study of a Fiber Laser Assisted Friction Stir Welding Process, Proc. SPIE, 2012, 8239, p 13–18
18.
Zurück zum Zitat H. Liu, N. Guo, and J. Feng, Friction Stir Welding Assisted by Micro-plasma Arc, Proceedings of the 6th International Symposium on Friction Stir Welding, Montreal, Canada, October 10-13, 2006, p 01–25. H. Liu, N. Guo, and J. Feng, Friction Stir Welding Assisted by Micro-plasma Arc, Proceedings of the 6th International Symposium on Friction Stir Welding, Montreal, Canada, October 10-13, 2006, p 01–25.
19.
Zurück zum Zitat G. Kohn, Y. Greenberg, I. Makover, and A. Munitz, Laser-Assisted Friction Stir Welding, Weld. J., 2002, 81, p 46–48 G. Kohn, Y. Greenberg, I. Makover, and A. Munitz, Laser-Assisted Friction Stir Welding, Weld. J., 2002, 81, p 46–48
20.
Zurück zum Zitat S.L. Campanelli, G. Casalino, C. Casavola, and V. Moramarco, Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy, Materials, 2013, 6, p 5923–5941CrossRef S.L. Campanelli, G. Casalino, C. Casavola, and V. Moramarco, Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy, Materials, 2013, 6, p 5923–5941CrossRef
21.
Zurück zum Zitat T. DebRoy, A. De, H.K.D.H. Bhadeshia, V.D. Manvatkar, and A. Arora, Tool Durability Maps for Friction Stir Welding of an Aluminium Alloy, Proc. R. Soc. A, 2012, 468, p 3552–3570CrossRef T. DebRoy, A. De, H.K.D.H. Bhadeshia, V.D. Manvatkar, and A. Arora, Tool Durability Maps for Friction Stir Welding of an Aluminium Alloy, Proc. R. Soc. A, 2012, 468, p 3552–3570CrossRef
22.
Zurück zum Zitat A. Bachmaier, M. Hafok, and R. Pippan, Rate Independent and Rate Dependent Structural Evolution During Severe Plastic Deformation, Mater. Trans., 2010, 51(1), p 8–13CrossRef A. Bachmaier, M. Hafok, and R. Pippan, Rate Independent and Rate Dependent Structural Evolution During Severe Plastic Deformation, Mater. Trans., 2010, 51(1), p 8–13CrossRef
23.
Zurück zum Zitat M. Warmuzek and A. Gazda, An Analysis of Cooling Rate Influence on the Sequence of Intermetallic Phases Precipitation in Some Commercial Aluminium Alloys, J. Anal. At. Spectrom., 1999, 14, p 535–537CrossRef M. Warmuzek and A. Gazda, An Analysis of Cooling Rate Influence on the Sequence of Intermetallic Phases Precipitation in Some Commercial Aluminium Alloys, J. Anal. At. Spectrom., 1999, 14, p 535–537CrossRef
24.
Zurück zum Zitat J. Martin, Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, 1980 J. Martin, Micromechanisms in Particle Hardened Alloys, Cambridge University Press, Cambridge, 1980
25.
Zurück zum Zitat J.Q. Su, T.W. Nelson, and C.J. Sterling, Grain Refinement of Aluminum Alloys by Friction Stir Processing, Mater. Sci. Eng. A, 2006, 405, p 277–286CrossRef J.Q. Su, T.W. Nelson, and C.J. Sterling, Grain Refinement of Aluminum Alloys by Friction Stir Processing, Mater. Sci. Eng. A, 2006, 405, p 277–286CrossRef
26.
Zurück zum Zitat J. Guo, S. Amira, P. Gougeon, and X.G. Chen, Effect of the Surface Preparation Techniques on the EBSD Analysis of a Friction Stir Welded AA1100-B4C Metal Matrix Composite, Mater. Charact., 2011, 62, p 865–877CrossRef J. Guo, S. Amira, P. Gougeon, and X.G. Chen, Effect of the Surface Preparation Techniques on the EBSD Analysis of a Friction Stir Welded AA1100-B4C Metal Matrix Composite, Mater. Charact., 2011, 62, p 865–877CrossRef
27.
Zurück zum Zitat R.W. Fonda, K.E. Knipling, and J.F. Bingert, Microstructural Evolution Ahead of the Tool in Aluminum Friction Stir Welds, Scripta Mater., 2007, 58, p 343–348CrossRef R.W. Fonda, K.E. Knipling, and J.F. Bingert, Microstructural Evolution Ahead of the Tool in Aluminum Friction Stir Welds, Scripta Mater., 2007, 58, p 343–348CrossRef
Metadaten
Titel
Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy
verfasst von
D. K. Yaduwanshi
S. Bag
S. Pal
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-014-1170-x

Weitere Artikel der Ausgabe 10/2014

Journal of Materials Engineering and Performance 10/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.