Skip to main content
Erschienen in: Journal of Materials Science 5/2020

23.09.2019 | Metals & corrosion

Effect of restraint stress on martensite transformation in low transformation temperature weld metal

verfasst von: Zhijin Zhou, Xinjie Di, Chengning Li, Shipin Wu

Erschienen in: Journal of Materials Science | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, martensite transformation behavior of low transformation temperature (LTT) weld metals under unrestrained and restrained conditions was analyzed by thermal simulation technology. It is found that martensite transformation start (Ms) temperature and martensite transformation temperature range of LTT weld metal under restrained condition increased by 85 K and 50 K, respectively, compared with that of under unrestrained condition, which is attributed to the significant increase Gibbs free energy produced by restraint stress for martensite transformation. The increasement of Ms due to the effect of restraint stress is quantitatively described by Fe–X–C ternary regular solution-elastic energy model. Based on the transformation kinetics curve, the effect of restraint stress on martensite transformation of LTT weld metal can be divided into three stages, including stress-induced nucleation, transition and without effect stages. In initial stage, the martensite nucleates at a relatively high temperature with a low phase transformation rate due to the directional effect of restraint stress; in second stage with martensite transformation fraction range of 0.2–0.6, the elastic energy caused by restraint stress decreases significantly, and the chemical free energy of martensite transformation under restrained condition is lower than that under unrestrained condition, which results in the martensitic transformation rate of LTT weld metal under restraint condition being lower than that under unrestrained condition; in final stage, the small value of restraint stress has little effect on martensite transformation of LTT weld metal, and the transformation rate of martensite mainly depends on the content of austenite. This study provides a theoretical base for better understanding phase transformation and microstructure of LTT weld metal under restrained condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liu Y, Shi L, Liu C, Yu L, Yan Z, Li H (2016) Effect of step quenching on microstructures and mechanical properties of HSLA steel. Mater Sci Eng A 675:371–378CrossRef Liu Y, Shi L, Liu C, Yu L, Yan Z, Li H (2016) Effect of step quenching on microstructures and mechanical properties of HSLA steel. Mater Sci Eng A 675:371–378CrossRef
2.
Zurück zum Zitat Ramesh R, Dinaharan I, Kumar R, Akinlabi E (2017) Microstructure and mechanical characterization of friction stir welded high strength low alloy steels. Mater Sci Eng A 687:39–46CrossRef Ramesh R, Dinaharan I, Kumar R, Akinlabi E (2017) Microstructure and mechanical characterization of friction stir welded high strength low alloy steels. Mater Sci Eng A 687:39–46CrossRef
3.
Zurück zum Zitat Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253CrossRef Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253CrossRef
4.
Zurück zum Zitat Ferro P, Berto F, James N (2017) Asymptotic residual stress distribution induced by multipass welding processes. Int J Fatigue 101:421–429CrossRef Ferro P, Berto F, James N (2017) Asymptotic residual stress distribution induced by multipass welding processes. Int J Fatigue 101:421–429CrossRef
5.
Zurück zum Zitat Chen X, Wang P, Pan Q, Lin S (2018) The effect of martensitic phase transformation dilation on microstructure, strain–stress and mechanical properties for welding of high-strength steel. Crystals 8(7):293–308CrossRef Chen X, Wang P, Pan Q, Lin S (2018) The effect of martensitic phase transformation dilation on microstructure, strain–stress and mechanical properties for welding of high-strength steel. Crystals 8(7):293–308CrossRef
7.
Zurück zum Zitat Ohta A (1999) Fatigue strength improvement by using newly developed low transformation temperature welding material. Weld World 43(6):38–42 Ohta A (1999) Fatigue strength improvement by using newly developed low transformation temperature welding material. Weld World 43(6):38–42
8.
Zurück zum Zitat Ramjaun T, Stone H, Karlsson L, Kelleher J, Moat R, Kornmeier JR, Dalaei K, Bhadeshia H (2014) Effect of interpass temperature on residual stresses in multipass welds produced using low transformation temperature filler alloy. Sci Technol Weld Join 19(1):44–51CrossRef Ramjaun T, Stone H, Karlsson L, Kelleher J, Moat R, Kornmeier JR, Dalaei K, Bhadeshia H (2014) Effect of interpass temperature on residual stresses in multipass welds produced using low transformation temperature filler alloy. Sci Technol Weld Join 19(1):44–51CrossRef
9.
Zurück zum Zitat Harati E, Karlsson L, Svensson L-E, Dalaei K (2017) Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels. Int J Fatigue 97:39–47CrossRef Harati E, Karlsson L, Svensson L-E, Dalaei K (2017) Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels. Int J Fatigue 97:39–47CrossRef
10.
Zurück zum Zitat Deng D, Liu X, He J, Liang W (2016) Investigating the influence of external restraint on welding distortion in thin-plate bead-on joint by means of numerical simulation and experiment. Int J Adv Manuf Technol 82(5–8):1049–1062CrossRef Deng D, Liu X, He J, Liang W (2016) Investigating the influence of external restraint on welding distortion in thin-plate bead-on joint by means of numerical simulation and experiment. Int J Adv Manuf Technol 82(5–8):1049–1062CrossRef
11.
Zurück zum Zitat Leggatt RH (2008) Residual stresses in welded structures. Int J Press Vessels Pip 85(3):144–151CrossRef Leggatt RH (2008) Residual stresses in welded structures. Int J Press Vessels Pip 85(3):144–151CrossRef
12.
Zurück zum Zitat Dixneit J, Kromm A, Hannemann A, Friedersdorf P, Kannengießer T, Gibmeier J (2016) In-situ load analysis in multi-run welding using LTT filler materials. Weld World 60(6):1159–1168CrossRef Dixneit J, Kromm A, Hannemann A, Friedersdorf P, Kannengießer T, Gibmeier J (2016) In-situ load analysis in multi-run welding using LTT filler materials. Weld World 60(6):1159–1168CrossRef
13.
Zurück zum Zitat Ramjaun T, Stone H, Karlsson L, Kelleher J, Ooi S, Dalaei K, Rebelo Kornmeier J, Bhadeshia H (2014) Effects of dilution and baseplate strength on stress distributions in multipass welds deposited using low transformation temperature filler alloys. Sci Technol Weld Join 19(6):461–467CrossRef Ramjaun T, Stone H, Karlsson L, Kelleher J, Ooi S, Dalaei K, Rebelo Kornmeier J, Bhadeshia H (2014) Effects of dilution and baseplate strength on stress distributions in multipass welds deposited using low transformation temperature filler alloys. Sci Technol Weld Join 19(6):461–467CrossRef
14.
Zurück zum Zitat Ooi S, Garnham J, Ramjaun T (2014) Low transformation temperature weld filler for tensile residual stress reduction. Mater Des 1980–2015(56):773–781CrossRef Ooi S, Garnham J, Ramjaun T (2014) Low transformation temperature weld filler for tensile residual stress reduction. Mater Des 1980–2015(56):773–781CrossRef
15.
Zurück zum Zitat Thadhani N, Meyers M (1986) Kinetics of martensitic transformation induced by a tensile stress pulse. Acta Metall 34(8):1625–1641CrossRef Thadhani N, Meyers M (1986) Kinetics of martensitic transformation induced by a tensile stress pulse. Acta Metall 34(8):1625–1641CrossRef
16.
Zurück zum Zitat Chang S-N, AndréMeyers M (1988) Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4 wt% Mn alloy. Acta Metall 36(4):1085–1098CrossRef Chang S-N, AndréMeyers M (1988) Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4 wt% Mn alloy. Acta Metall 36(4):1085–1098CrossRef
17.
Zurück zum Zitat McReynolds AW (1949) Effects of stress and deformation on the martensite transformation. J Appl Phys 20(10):896–907CrossRef McReynolds AW (1949) Effects of stress and deformation on the martensite transformation. J Appl Phys 20(10):896–907CrossRef
18.
Zurück zum Zitat Fiedler H (1955) The effect of deformation on the martensitic transformation in austenitic stainless steels. Trans Am Soc Met 47:267–290 Fiedler H (1955) The effect of deformation on the martensitic transformation in austenitic stainless steels. Trans Am Soc Met 47:267–290
19.
Zurück zum Zitat Wollmann D, Guimarães J (1973) The effects of plastic deformation and thermal stabilization of austenite upon martensite burst kinetics. Scripta Metall 7(4):355–359CrossRef Wollmann D, Guimarães J (1973) The effects of plastic deformation and thermal stabilization of austenite upon martensite burst kinetics. Scripta Metall 7(4):355–359CrossRef
20.
Zurück zum Zitat Nedjad SH, Gharabagh M-RM (2008) Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. Int J Mater Res 99(11):1248–1255CrossRef Nedjad SH, Gharabagh M-RM (2008) Dislocation structure and crystallite size distribution in lath martensite determined by X-ray diffraction peak profile analysis. Int J Mater Res 99(11):1248–1255CrossRef
21.
Zurück zum Zitat Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef
22.
Zurück zum Zitat Ungár T, Borbély A (1996) The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef Ungár T, Borbély A (1996) The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef
23.
Zurück zum Zitat Feng ZY, Di XJ, Wu SP, Zhang Z, Liu XQ, Wang DP (2017) Comparison of two types of low-transformation-temperature weld metals based on solidification mode. Sci Technol Weld Join 23(3):241–248CrossRef Feng ZY, Di XJ, Wu SP, Zhang Z, Liu XQ, Wang DP (2017) Comparison of two types of low-transformation-temperature weld metals based on solidification mode. Sci Technol Weld Join 23(3):241–248CrossRef
24.
Zurück zum Zitat Bhadeshia H (2004) Developments in martensitic and bainitic steels: role of the shape deformation. Mater Sci Eng A 378(1–2):34–39CrossRef Bhadeshia H (2004) Developments in martensitic and bainitic steels: role of the shape deformation. Mater Sci Eng A 378(1–2):34–39CrossRef
25.
Zurück zum Zitat Liu Y, Sommer F, Mittemeijer E (2004) Kinetics of the abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater 52(9):2549–2560CrossRef Liu Y, Sommer F, Mittemeijer E (2004) Kinetics of the abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater 52(9):2549–2560CrossRef
26.
Zurück zum Zitat Mohapatra G, Sommer F, Mittemeijer E (2007) The austenite to ferrite transformation of Fe–Ni under the influence of a uniaxially applied tensile stress. Acta Mater 55(13):4359–4368CrossRef Mohapatra G, Sommer F, Mittemeijer E (2007) The austenite to ferrite transformation of Fe–Ni under the influence of a uniaxially applied tensile stress. Acta Mater 55(13):4359–4368CrossRef
27.
Zurück zum Zitat Rao BVN, Thomas G (1980) Structure-property relations and the design of Fe–4Cr–C base structural steels for high strength and toughness. Metall Trans A 11(3):441–457CrossRef Rao BVN, Thomas G (1980) Structure-property relations and the design of Fe–4Cr–C base structural steels for high strength and toughness. Metall Trans A 11(3):441–457CrossRef
28.
Zurück zum Zitat Dutta RK, Amirthalingam M, Hermans MJM, Richardson IM (2013) Kinetics of bainitic transformation and transformation plasticity in a high strength quenched and tempered structural steel. Mater Sci Eng A 559:86–95CrossRef Dutta RK, Amirthalingam M, Hermans MJM, Richardson IM (2013) Kinetics of bainitic transformation and transformation plasticity in a high strength quenched and tempered structural steel. Mater Sci Eng A 559:86–95CrossRef
29.
Zurück zum Zitat Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A 273:40–57CrossRef Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng A 273:40–57CrossRef
30.
Zurück zum Zitat Ea W (1994) The γ → α transformation in low carbon irons. ISIJ Int 34(8):615–630CrossRef Ea W (1994) The γ → α transformation in low carbon irons. ISIJ Int 34(8):615–630CrossRef
31.
Zurück zum Zitat Sahu P, Hamada A, Ghosh Chowdhury S, Karjalainen L (2007) Structure and microstructure evolution during martensitic transformation in wrought Fe–26 Mn–0.14 C austenitic steel: an effect of cooling rate. J Appl Crystallogr 40(2):354–361CrossRef Sahu P, Hamada A, Ghosh Chowdhury S, Karjalainen L (2007) Structure and microstructure evolution during martensitic transformation in wrought Fe–26 Mn–0.14 C austenitic steel: an effect of cooling rate. J Appl Crystallogr 40(2):354–361CrossRef
32.
Zurück zum Zitat Malik A, Amberg G, Borgenstam A, Ågren J (2013) Effect of external loading on the martensitic transformation—a phase field study. Acta Mater 61(20):7868–7880CrossRef Malik A, Amberg G, Borgenstam A, Ågren J (2013) Effect of external loading on the martensitic transformation—a phase field study. Acta Mater 61(20):7868–7880CrossRef
35.
Zurück zum Zitat Swartz J (1969) The solubility of graphite and cementite in-alpha, delta-aron. Trans Met Soc AIME 245(5):1083–1092 Swartz J (1969) The solubility of graphite and cementite in-alpha, delta-aron. Trans Met Soc AIME 245(5):1083–1092
36.
Zurück zum Zitat Wada T, Wada H, Elliott J, Chipman J (1972) Activity of carbon and solubility of carbides in the FCC Fe–Mo–C, Fe–Cr–C, and Fe–VC alloys. Metal Mater Trans B 3(11):2865–2872CrossRef Wada T, Wada H, Elliott J, Chipman J (1972) Activity of carbon and solubility of carbides in the FCC Fe–Mo–C, Fe–Cr–C, and Fe–VC alloys. Metal Mater Trans B 3(11):2865–2872CrossRef
37.
Zurück zum Zitat Kaufman L (1959) The free-energy changes attending the martensitic transformation in the iron-chromium and iron-chromium-nickel systems. Trans Met Soc AIME 215:218–227 Kaufman L (1959) The free-energy changes attending the martensitic transformation in the iron-chromium and iron-chromium-nickel systems. Trans Met Soc AIME 215:218–227
38.
Zurück zum Zitat Patel J, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1(5):531–538CrossRef Patel J, Cohen M (1953) Criterion for the action of applied stress in the martensitic transformation. Acta Metall 1(5):531–538CrossRef
39.
Zurück zum Zitat Chang Y, Li X, Zhao K, Wang C, Zheng G, Hu P, Dong H (2015) Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts. Mater Sci Eng A 629:1–7CrossRef Chang Y, Li X, Zhao K, Wang C, Zheng G, Hu P, Dong H (2015) Influence of stress on martensitic transformation and mechanical properties of hot stamped AHSS parts. Mater Sci Eng A 629:1–7CrossRef
40.
Zurück zum Zitat Liu Y, Liu C, Sommer F, Mittemeijer EJ (2015) Martensite formation kinetics of substitutional Fe–0.7at.%Al alloy under uniaxial compressive stress. Acta Mater 98(6–7):164–174CrossRef Liu Y, Liu C, Sommer F, Mittemeijer EJ (2015) Martensite formation kinetics of substitutional Fe–0.7at.%Al alloy under uniaxial compressive stress. Acta Mater 98(6–7):164–174CrossRef
Metadaten
Titel
Effect of restraint stress on martensite transformation in low transformation temperature weld metal
verfasst von
Zhijin Zhou
Xinjie Di
Chengning Li
Shipin Wu
Publikationsdatum
23.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04049-8

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Science 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.