Skip to main content
Erschienen in: Journal of Materials Science 5/2020

25.09.2019 | Metals & corrosion

Microstructure evolution, magnetostrictive and mechanical properties of (Fe83Ga17)99.9(NbC)0.1 alloy ultra-thin sheets

verfasst von: Qingli Qi, Jiheng Li, Xing Mu, Zhiyi Ding, Xiaoqian Bao, Xuexu Gao

Erschienen in: Journal of Materials Science | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ultra-thin (Fe83Ga17)99.9(NbC)0.1 sheets with the thickness of 0.06–0.15 mm were prepared from the secondary recrystallized sheets via rolling. The recrystallization texture evolution, magnetostriction and mechanical properties in the rolled sheets during the annealing at 1200 °C for 1.5–3 h were investigated. Results indicated that the magnetostriction of the ultra-thin sheet was closely related to the texture evolution depended on heat-treatment process. The major textures in the as-rolled sheet were {113}<361> and {111}<112> deformed texture, and the saturation magnetostriction was only ~ 63 ppm. However, an ideal {100}<001> texture was obtained in the recrystallized sheets annealed at 1200 °C for 2 h, producing a corresponding magnetostriction of 147 ppm. Based on texture analysis, the appearance of cubic texture is mainly the consequence of the existence of cubic nuclei and transitional orientation {113}<361> in deformed grains as well as the lowest surface energy at the (100) plane. Compared with Goss secondary recrystallized (Fe83Ga17)99.9(NbC)0.1 sheet with a thickness of 0.3 mm, the tensile ductility of cubic recrystallized ultra-thin (Fe83Ga17)99.9(NbC)0.1 sheet was obviously improved from 2.4 to 4.4%, which was mainly attributed to the primary recrystallized microstructure with small grain size and transgranular fracture mode. The ultra-thin cubic textured (Fe83Ga17)99.9(NbC)0.1 sheets could significantly reduce eddy current losses at high frequency, and meet the requirements of low eddy current loss and high toughness for specific applications, such as ultrasonic applications and torque sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36:3238–3240 Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL (2000) Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn 36:3238–3240
2.
Zurück zum Zitat Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA (2003) Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys 93:8621–8623 Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA (2003) Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys 93:8621–8623
3.
Zurück zum Zitat Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M (2004) Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater 52:5043–5050 Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M (2004) Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater 52:5043–5050
4.
Zurück zum Zitat Li M, Li J, Bao X, Liu Y, Wang J, Zhao Y, Gao X (2017) Variable stiffness Fe82Ga13.5Al4.5 spring based on magnetoelastic effect. Appl Phys Lett 110:142405 Li M, Li J, Bao X, Liu Y, Wang J, Zhao Y, Gao X (2017) Variable stiffness Fe82Ga13.5Al4.5 spring based on magnetoelastic effect. Appl Phys Lett 110:142405
5.
Zurück zum Zitat Gou J, Liu X, Wu K, Wang Y, Hu S, Zhao H, Xiao A, Ma T, Yan M (2016) Tailoring magnetostriction sign of ferromagnetic composite by increasing magnetic field strength. Appl Phys Lett 109:082404 Gou J, Liu X, Wu K, Wang Y, Hu S, Zhao H, Xiao A, Ma T, Yan M (2016) Tailoring magnetostriction sign of ferromagnetic composite by increasing magnetic field strength. Appl Phys Lett 109:082404
6.
Zurück zum Zitat Javed A, Szumiata T, Morley NA, Gibbs MRJ (2010) An investigation of the effect of structural order on magnetostriction and magnetic behavior of Fe–Ga alloy thin films. Acta Mater 58:4003–4011 Javed A, Szumiata T, Morley NA, Gibbs MRJ (2010) An investigation of the effect of structural order on magnetostriction and magnetic behavior of Fe–Ga alloy thin films. Acta Mater 58:4003–4011
7.
Zurück zum Zitat Qi QL, Li JH, Ding ZY, Mu X, Bao XQ, Tang ZF, Zhu J, Gao XX (2019) Magnetostriction of Fe–Ga coatings and their application in ultrasonic guided wave sensing. J Appl Phys 125:043901 Qi QL, Li JH, Ding ZY, Mu X, Bao XQ, Tang ZF, Zhu J, Gao XX (2019) Magnetostriction of Fe–Ga coatings and their application in ultrasonic guided wave sensing. J Appl Phys 125:043901
8.
Zurück zum Zitat Li JH, Gao XX, Xia T, Cheng L, Bao XQ, Zhu J (2010) Textured Fe–Ga magnetostrictive wires with large Wiedemann twist. Scr Mater 63:28–31 Li JH, Gao XX, Xia T, Cheng L, Bao XQ, Zhu J (2010) Textured Fe–Ga magnetostrictive wires with large Wiedemann twist. Scr Mater 63:28–31
9.
Zurück zum Zitat Jager JV, Scherbakov AV, Linnik TL, Yakovlev DR, Wang M, Wadley P, Holy V, Cavill SA, Akimov AV, Rushforth AW, Bayer M (2013) Picosecond inverse magnetostriction in galfenol thin films. Appl Phys Lett 103:032409 Jager JV, Scherbakov AV, Linnik TL, Yakovlev DR, Wang M, Wadley P, Holy V, Cavill SA, Akimov AV, Rushforth AW, Bayer M (2013) Picosecond inverse magnetostriction in galfenol thin films. Appl Phys Lett 103:032409
10.
Zurück zum Zitat Yuan C, Li JH, Bao XQ, Gao XX (2014) Influence of annealing process on texture evolution and magnetostriction in rolled Fe–Ga based alloys. J Magn Magn Mater 362:154–158 Yuan C, Li JH, Bao XQ, Gao XX (2014) Influence of annealing process on texture evolution and magnetostriction in rolled Fe–Ga based alloys. J Magn Magn Mater 362:154–158
11.
Zurück zum Zitat Na SM, Flatau AB (2013) Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets. Smart Mater Struct 22:125026 Na SM, Flatau AB (2013) Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets. Smart Mater Struct 22:125026
12.
Zurück zum Zitat Cheng LM, Nolting AE, Voyzelle B, Galvani C (2007) Deformation behavior of polycrystalline Galfenol at elevated temperatures. In: Proceedings of the SPIE, vol 652, p 65262N Cheng LM, Nolting AE, Voyzelle B, Galvani C (2007) Deformation behavior of polycrystalline Galfenol at elevated temperatures. In: Proceedings of the SPIE, vol 652, p 65262N
13.
Zurück zum Zitat Li JH, Gao XX, Zhu J, He CX, Qiao JW, Zhang MC (2009) Texture evolution and magnetostriction in rolled (Fe81Ga19) 99Nb1 alloy. J Alloys Compd 476:529–533 Li JH, Gao XX, Zhu J, He CX, Qiao JW, Zhang MC (2009) Texture evolution and magnetostriction in rolled (Fe81Ga19) 99Nb1 alloy. J Alloys Compd 476:529–533
14.
Zurück zum Zitat Bormio-Nunes C, Santos CT, Leandro IF, Turelli RS, Grossinger R, Atiff M (2011) Improved magnetostriction of Fe72Ga28 boron doped alloys. J Appl Phys 109:07A934 Bormio-Nunes C, Santos CT, Leandro IF, Turelli RS, Grossinger R, Atiff M (2011) Improved magnetostriction of Fe72Ga28 boron doped alloys. J Appl Phys 109:07A934
16.
Zurück zum Zitat Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX (2015) Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater 391:145–150 Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX (2015) Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater 391:145–150
17.
Zurück zum Zitat Na SM, Flatau AB (2012) Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (0 1 1)[1 0 0] orientation. Scr Mater 66:307–310 Na SM, Flatau AB (2012) Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (0 1 1)[1 0 0] orientation. Scr Mater 66:307–310
18.
Zurück zum Zitat Li JH, Gao XX, Zhu J, Li J, Zhang MC (2009) Ductility enhancement and magnetostriction of polycrystalline Fe–Ga based alloys. J Alloys Compd 484:203–206 Li JH, Gao XX, Zhu J, Li J, Zhang MC (2009) Ductility enhancement and magnetostriction of polycrystalline Fe–Ga based alloys. J Alloys Compd 484:203–206
19.
Zurück zum Zitat Ushigami Y, Mizokami M, Fujikura M, Kubota T, Fujii H, Murakami K (2003) Recent development of low-loss grain-oriented silicon steel. J Magn Magn Mater 307:254–255 Ushigami Y, Mizokami M, Fujikura M, Kubota T, Fujii H, Murakami K (2003) Recent development of low-loss grain-oriented silicon steel. J Magn Magn Mater 307:254–255
20.
Zurück zum Zitat Xia ZS, Kang YL, Wang QL (2008) Developments in the production of grain-oriented electrical steel. J Magn Magn Mater 320:3229–3233 Xia ZS, Kang YL, Wang QL (2008) Developments in the production of grain-oriented electrical steel. J Magn Magn Mater 320:3229–3233
21.
Zurück zum Zitat Wang H, Li CS, Zhu T (2014) Hard magnetization direction and its relation with magnetic permeability of highly grain-oriented electrical steel. J Miner Metall Mater 21:1077–1082 Wang H, Li CS, Zhu T (2014) Hard magnetization direction and its relation with magnetic permeability of highly grain-oriented electrical steel. J Miner Metall Mater 21:1077–1082
22.
Zurück zum Zitat Köhler D (1960) Promotion of cubic grain growth in 3% silicon iron by control of annealing atmosphere composition. J Appl Phys 31:S408–S409 Köhler D (1960) Promotion of cubic grain growth in 3% silicon iron by control of annealing atmosphere composition. J Appl Phys 31:S408–S409
23.
Zurück zum Zitat Kramer JJ (1992) Nucleation and growth effects in thin ferromagnetic sheets: a review focusing on surface energy-induced secondary recrystallization. Metall Trans A 23:1987–1998 Kramer JJ (1992) Nucleation and growth effects in thin ferromagnetic sheets: a review focusing on surface energy-induced secondary recrystallization. Metall Trans A 23:1987–1998
24.
Zurück zum Zitat Walter JL, Hibbard WR, Fiedler HC (1958) Magnetic properties of cube textured silicon-iron magnetic sheet. J Appl Phys 29:363–365 Walter JL, Hibbard WR, Fiedler HC (1958) Magnetic properties of cube textured silicon-iron magnetic sheet. J Appl Phys 29:363–365
25.
Zurück zum Zitat Wiener G, Albert PA, Trapp RH (1958) Cube texture in body centered magnetic alloys. J App Phys 29:366–367 Wiener G, Albert PA, Trapp RH (1958) Cube texture in body centered magnetic alloys. J App Phys 29:366–367
26.
Zurück zum Zitat Walter JL (1965) Control of texture in magnetic material by surface energy. J Appl Phys 36:1213–1220 Walter JL (1965) Control of texture in magnetic material by surface energy. J Appl Phys 36:1213–1220
27.
Zurück zum Zitat Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX (2015) Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater 374:459–462 Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX (2015) Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater 374:459–462
28.
Zurück zum Zitat Arai KI, Ishiyama K (1988) Rolled texture and magnetic properties of 3% silicon steel. J Appl Phys 64:5352–5354 Arai KI, Ishiyama K (1988) Rolled texture and magnetic properties of 3% silicon steel. J Appl Phys 64:5352–5354
29.
Zurück zum Zitat Hölscher M, Raabe D, Lücke K (1994) Relationship between rolling textures and shear textures in fcc and bcc metals. Acta Metall Mater 42:879–886 Hölscher M, Raabe D, Lücke K (1994) Relationship between rolling textures and shear textures in fcc and bcc metals. Acta Metall Mater 42:879–886
30.
Zurück zum Zitat Liu Y, Li J, Gao X (2017) Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe–Ga alloys. J Magn Magn Mater 423:245–249 Liu Y, Li J, Gao X (2017) Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe–Ga alloys. J Magn Magn Mater 423:245–249
31.
Zurück zum Zitat Raabe D, Zhao Z, Park SJ, Roters F (2002) Theory of orientation gradients in plastically strained crystals. Acta Mater 50:421–440 Raabe D, Zhao Z, Park SJ, Roters F (2002) Theory of orientation gradients in plastically strained crystals. Acta Mater 50:421–440
32.
Zurück zum Zitat Hölscher M, Raabe D, Lücke K (1991) Rolling and recrystallization textures of bcc steels. Steel Res 62:567–575 Hölscher M, Raabe D, Lücke K (1991) Rolling and recrystallization textures of bcc steels. Steel Res 62:567–575
33.
Zurück zum Zitat Dorner D, Zaefferer S, Raabe D (2007) Retention of the Goss orientation between microbands during cold rolling of an Fe3% Si single crystal. Acta Mater 55:2519–2530 Dorner D, Zaefferer S, Raabe D (2007) Retention of the Goss orientation between microbands during cold rolling of an Fe3% Si single crystal. Acta Mater 55:2519–2530
34.
Zurück zum Zitat Zhang N, Yang P, He CX, Mao WM (2016) Effect of {110}<229> and {110}<112> grains on texture evolution during cold rolling and annealing of electrical steel. ISIJ Int 56:1462–1468 Zhang N, Yang P, He CX, Mao WM (2016) Effect of {110}<229> and {110}<112> grains on texture evolution during cold rolling and annealing of electrical steel. ISIJ Int 56:1462–1468
35.
Zurück zum Zitat Sha YH, Sun C, Zhang F, Patel D, Chen X, Kalidindi SR, Zuo L (2014) Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater 76:106–117 Sha YH, Sun C, Zhang F, Patel D, Chen X, Kalidindi SR, Zuo L (2014) Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater 76:106–117
36.
Zurück zum Zitat Lapeire L, Sidor JJ, Verleysen P, Verbeken K, Graeve DI, Terryn H, Kestens LAI (2015) Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater 95:224–235 Lapeire L, Sidor JJ, Verleysen P, Verbeken K, Graeve DI, Terryn H, Kestens LAI (2015) Texture comparison between room temperature rolled and cryogenically rolled pure copper. Acta Mater 95:224–235
37.
Zurück zum Zitat Kang CG, Kang HG, Kim HC, Huh MY, Suk HG (2007) Formation of shear texture components during hot rolling of AA 1050. J Mater Process Technol 187:542–545 Kang CG, Kang HG, Kim HC, Huh MY, Suk HG (2007) Formation of shear texture components during hot rolling of AA 1050. J Mater Process Technol 187:542–545
38.
Zurück zum Zitat Truszkowski W, Krol J, Major B (1980) Inhomogeneity of rolling texture in fcc metals, Major. Metall Trans A 11:749–758 Truszkowski W, Krol J, Major B (1980) Inhomogeneity of rolling texture in fcc metals, Major. Metall Trans A 11:749–758
39.
Zurück zum Zitat Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624 Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624
40.
Zurück zum Zitat Liang RY, Yang P, Mao WM (2017) Effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. Acta Metall Sin 30:895–906 Liang RY, Yang P, Mao WM (2017) Effect of initial Goss texture sharpness on texture evolution and magnetic properties of ultra-thin grain-oriented electrical steel. Acta Metall Sin 30:895–906
41.
Zurück zum Zitat Li J, Liu Y, Li X, Mu X, Bao X, Gao X (2018) Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe–Ga–Al rolled sheets. J Magn Magn Mater 457:30–37 Li J, Liu Y, Li X, Mu X, Bao X, Gao X (2018) Effects of rolling conditions on recrystallization microstructure and texture in magnetostrictive Fe–Ga–Al rolled sheets. J Magn Magn Mater 457:30–37
42.
Zurück zum Zitat Hayakawa Y, Kurosawa M (2002) Orientation relationship between primary and secondary recrystallized texture in electrical steel. Acta Mater 50:4527–4534 Hayakawa Y, Kurosawa M (2002) Orientation relationship between primary and secondary recrystallized texture in electrical steel. Acta Mater 50:4527–4534
43.
Zurück zum Zitat Morawiec A (2000) Grain misorientations in theories of abnormal grain growth in silicon steel. Scr Mater 43:275–278 Morawiec A (2000) Grain misorientations in theories of abnormal grain growth in silicon steel. Scr Mater 43:275–278
44.
Zurück zum Zitat Na SM, Flatau AB (2007) Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe–Ga based alloys. J Appl Phys 101:09N518 Na SM, Flatau AB (2007) Secondary recrystallization, crystallographic texture and magnetostriction in rolled Fe–Ga based alloys. J Appl Phys 101:09N518
45.
Zurück zum Zitat Na SM, Flatau AB (2012) Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct 21:055024 Na SM, Flatau AB (2012) Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct 21:055024
46.
Zurück zum Zitat Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC (2010) Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater 63:246–249 Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC (2010) Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater 63:246–249
Metadaten
Titel
Microstructure evolution, magnetostrictive and mechanical properties of (Fe83Ga17)99.9(NbC)0.1 alloy ultra-thin sheets
verfasst von
Qingli Qi
Jiheng Li
Xing Mu
Zhiyi Ding
Xiaoqian Bao
Xuexu Gao
Publikationsdatum
25.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04057-8

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Science 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.