Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2018

15.05.2018

Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin

verfasst von: Dulal Chandra Jana, Prasenjit Barick, Bhaskar Prasad Saha

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Densified silicon carbide (SiC) is prepared through dry pressing of SiC powder followed by pressureless sintering in the presence of boron carbide and carbon as the additives. Sintering of SiC parts shows the increase in density with the increase in temperature (1950-2180 °C) by resulting in higher than 98% relative density (RD) at 2150 °C and above for 1 h. Sintered specimens are evaluated concerning the phase, microstructure and mechanical properties including hardness and flexural strength. The machined surface of SiC parts with about 98% RD is studied for the origin of failure. The estimated size of critical flaws (32-110 µm) based on flexural strength and fracture toughness indicates that machining defects are one of the primary reasons for failure in SiC ceramics. The order of magnitude of defects on machined surfaces of sintered SiC by SEM studies is found to be comparable with the estimated size of critical flaws. The failure behavior of SiC is discussed with the help of Weibull statistics with respect to the variation of four-point flexural strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Yamada and M. Mohri, Properties and Applications of Silicon Carbide Ceramics, Silicon Carbide Ceramics-1: Fundamentals and Solid Reaction, S. Somiya and Y. Inomata, Ed., Elsevier Applied Science, New York, 1991, p 13–44 CrossRef K. Yamada and M. Mohri, Properties and Applications of Silicon Carbide Ceramics, Silicon Carbide Ceramics-1: Fundamentals and Solid Reaction, S. Somiya and Y. Inomata, Ed., Elsevier Applied Science, New York, 1991, p 13–44 CrossRef
2.
Zurück zum Zitat H. Tanaka, Silicon Carbide Powder and Sintered Materials, J. Ceram. Soc. Jap., 2011, 119, p 218–233CrossRef H. Tanaka, Silicon Carbide Powder and Sintered Materials, J. Ceram. Soc. Jap., 2011, 119, p 218–233CrossRef
3.
Zurück zum Zitat S. Goel, The Current Understanding of the Diamond Machining of Silicon Carbide, J. Phys. D Appl. Phys., 2014, 47, p 1–36 S. Goel, The Current Understanding of the Diamond Machining of Silicon Carbide, J. Phys. D Appl. Phys., 2014, 47, p 1–36
4.
Zurück zum Zitat M. Omori and H. Takei, Preparation of Pressureless Sintered SiC-Al2O3-Y2O3, J. Mater. Sci., 1998, 23, p 3744–3749CrossRef M. Omori and H. Takei, Preparation of Pressureless Sintered SiC-Al2O3-Y2O3, J. Mater. Sci., 1998, 23, p 3744–3749CrossRef
5.
Zurück zum Zitat E.V. Zaretsky, Ceramic Bearings for Use in Gas Turbine Engines, J. Mater. Eng. Perform., 2013, 22, p 2830–2846CrossRef E.V. Zaretsky, Ceramic Bearings for Use in Gas Turbine Engines, J. Mater. Eng. Perform., 2013, 22, p 2830–2846CrossRef
6.
Zurück zum Zitat M.A. Mulla and V.D. Krstic, Mechanical Properties of β-SiC Pressureless Sintered with A12O3 Additions, Acta Metall. Mater., 1994, 42, p 303–308CrossRef M.A. Mulla and V.D. Krstic, Mechanical Properties of β-SiC Pressureless Sintered with A12O3 Additions, Acta Metall. Mater., 1994, 42, p 303–308CrossRef
7.
Zurück zum Zitat J.J. Melendez-Martinez, M. Castillo-Rodriguez, and A. Dominguez-Rodriguez, Creep and Microstructural Evolution at High Temperature of Liquid Phase-Sintered Silicon Carbide, J. Am. Ceram. Soc., 2007, 90, p 163–169CrossRef J.J. Melendez-Martinez, M. Castillo-Rodriguez, and A. Dominguez-Rodriguez, Creep and Microstructural Evolution at High Temperature of Liquid Phase-Sintered Silicon Carbide, J. Am. Ceram. Soc., 2007, 90, p 163–169CrossRef
8.
Zurück zum Zitat J. Chen, N. Li, Y. Wei, H. Han, and W. Yan, Effect of Ferrosilicon Additive and Sintering Condition on Microstructural Evolution and Mechanical Properties of Reaction-Bonded SiC Refractories, Ceram. Inter., 2016, 42, p 17650–17658CrossRef J. Chen, N. Li, Y. Wei, H. Han, and W. Yan, Effect of Ferrosilicon Additive and Sintering Condition on Microstructural Evolution and Mechanical Properties of Reaction-Bonded SiC Refractories, Ceram. Inter., 2016, 42, p 17650–17658CrossRef
9.
Zurück zum Zitat D.D. Nesmelov and S.N. Perevislov, Reaction Sintered Materials Based on Boron Carbide and Silicon Carbide, Glass Ceram., 2015, 71, p 313–319CrossRef D.D. Nesmelov and S.N. Perevislov, Reaction Sintered Materials Based on Boron Carbide and Silicon Carbide, Glass Ceram., 2015, 71, p 313–319CrossRef
10.
Zurück zum Zitat S. Prochazka, The Role of Boron and Carbon in the Sintering of Silicon Carbide, Special Ceramics, 6th ed., P. Popper, Ed., British Ceramic Research Association, Stoke-on Trent, 1975, p 171–182 S. Prochazka, The Role of Boron and Carbon in the Sintering of Silicon Carbide, Special Ceramics, 6th ed., P. Popper, Ed., British Ceramic Research Association, Stoke-on Trent, 1975, p 171–182
11.
Zurück zum Zitat A. Gubernat, L. Stobierski, and P. Łabaj, Microstructure and Mechanical Properties of Silicon Carbide Pressureless Sintered with Oxide Additives, J. Eur. Ceram. Soc., 2007, 27, p 781–789CrossRef A. Gubernat, L. Stobierski, and P. Łabaj, Microstructure and Mechanical Properties of Silicon Carbide Pressureless Sintered with Oxide Additives, J. Eur. Ceram. Soc., 2007, 27, p 781–789CrossRef
12.
Zurück zum Zitat Y. Hirata, N. Matsunaga, and S. Sameshima, Densification, Phases, Microstructures and Mechanical Properties of Liquid Phase-Sintered SiC, Key Eng. Mater., 2011, 484, p 124–129CrossRef Y. Hirata, N. Matsunaga, and S. Sameshima, Densification, Phases, Microstructures and Mechanical Properties of Liquid Phase-Sintered SiC, Key Eng. Mater., 2011, 484, p 124–129CrossRef
13.
Zurück zum Zitat E. Scafe, G. Giunta, L. Fabbri, L.D. Rese, G.D. Portu, and S. Guicciardi, Mechanical Behaviour of Silicon-Silicon Carbide Composites, J. Eur. Ceram. Soc., 2011, 16, p 703–713CrossRef E. Scafe, G. Giunta, L. Fabbri, L.D. Rese, G.D. Portu, and S. Guicciardi, Mechanical Behaviour of Silicon-Silicon Carbide Composites, J. Eur. Ceram. Soc., 2011, 16, p 703–713CrossRef
14.
Zurück zum Zitat G. Zhan and M. Mitomo, Microstructural Control for Strengthening of Silicon Carbide Ceramics, J. Am. Ceram. Soc., 1992, 82, p 2924–2926CrossRef G. Zhan and M. Mitomo, Microstructural Control for Strengthening of Silicon Carbide Ceramics, J. Am. Ceram. Soc., 1992, 82, p 2924–2926CrossRef
15.
Zurück zum Zitat S. Kaur, R.A. Cutler, and D.K. Shetty, Short-Crack Fracture Toughness of Silicon Carbide, J. Am. Ceram. Soc., 2009, 92, p 179–185CrossRef S. Kaur, R.A. Cutler, and D.K. Shetty, Short-Crack Fracture Toughness of Silicon Carbide, J. Am. Ceram. Soc., 2009, 92, p 179–185CrossRef
16.
Zurück zum Zitat L. Vargas-Gonzalez and R.F. Speyer, Flexural Strength, Fracture Toughness and Hardness of Silicon Carbide and Boron Carbide armour Ceramics, Inter. J. Appl. Ceram. Technol., 2010, 7, p 643–651CrossRef L. Vargas-Gonzalez and R.F. Speyer, Flexural Strength, Fracture Toughness and Hardness of Silicon Carbide and Boron Carbide armour Ceramics, Inter. J. Appl. Ceram. Technol., 2010, 7, p 643–651CrossRef
17.
Zurück zum Zitat A.A. Wereszczak, T.P. Kirkland, and K.T. Strong, Jr., Size-Scaling of Tensile Failure Stress in a Hot-Pressed Silicon Carbide, Inter. J. Appl. Ceram. Technol., 2010, 7, p 635–642CrossRef A.A. Wereszczak, T.P. Kirkland, and K.T. Strong, Jr., Size-Scaling of Tensile Failure Stress in a Hot-Pressed Silicon Carbide, Inter. J. Appl. Ceram. Technol., 2010, 7, p 635–642CrossRef
18.
Zurück zum Zitat D.J. Green, An Introduction to Mechanical Properties of Ceramics, 1st ed., Cambridge University Press, New York, 1998, p 189–292CrossRef D.J. Green, An Introduction to Mechanical Properties of Ceramics, 1st ed., Cambridge University Press, New York, 1998, p 189–292CrossRef
19.
Zurück zum Zitat L.A. Ortiz, F. Sanchez-Bajo, F.L. Cumbrera, and F. Guiberteau, X-ray Powder Diffraction Analysis of a Silicon Carbide Based Ceramics, Mater. Lett., 2001, 49, p 137–145CrossRef L.A. Ortiz, F. Sanchez-Bajo, F.L. Cumbrera, and F. Guiberteau, X-ray Powder Diffraction Analysis of a Silicon Carbide Based Ceramics, Mater. Lett., 2001, 49, p 137–145CrossRef
20.
Zurück zum Zitat D. Pandey and P. Krishna, The Origin of Polytype Structures, Prog. Cryst. Growth Ch. Mater., 1983, 7, p 213–258CrossRef D. Pandey and P. Krishna, The Origin of Polytype Structures, Prog. Cryst. Growth Ch. Mater., 1983, 7, p 213–258CrossRef
21.
Zurück zum Zitat W.J. Clegg, Role of Carbon in the Sintering of Boron-Doped Silicon Carbide, J. Am. Ceram. Soc., 2000, 83, p 1039–1043CrossRef W.J. Clegg, Role of Carbon in the Sintering of Boron-Doped Silicon Carbide, J. Am. Ceram. Soc., 2000, 83, p 1039–1043CrossRef
22.
Zurück zum Zitat A. Gubernat and L. Stobierski, Sintering of Silicon Carbide I. Effect of Carbon, Ceram. Inter., 2003, 29, p 287–292CrossRef A. Gubernat and L. Stobierski, Sintering of Silicon Carbide I. Effect of Carbon, Ceram. Inter., 2003, 29, p 287–292CrossRef
23.
Zurück zum Zitat F.F. Lange and T.K. Gupta, Sintering of SiC with Boron Compounds, J. Am. Ceram. Soc., 1976, 59, p 537–538CrossRef F.F. Lange and T.K. Gupta, Sintering of SiC with Boron Compounds, J. Am. Ceram. Soc., 1976, 59, p 537–538CrossRef
24.
Zurück zum Zitat A. Malinge, A. Coupe, Y. Petitcorps, and R. Pailler, Pressureless Sintering of Beta-Silicon Carbide Nanoparticles, J. Euro. Ceram. Soc., 2012, 32, p 4393–4400CrossRef A. Malinge, A. Coupe, Y. Petitcorps, and R. Pailler, Pressureless Sintering of Beta-Silicon Carbide Nanoparticles, J. Euro. Ceram. Soc., 2012, 32, p 4393–4400CrossRef
25.
Zurück zum Zitat S.J. Bull, T.F. Page, and E.H. Yoffe, An Explanation of the Indentation Size Effect in Ceramics, Phil. Mag. Lett., 1989, 59, p 281–288CrossRef S.J. Bull, T.F. Page, and E.H. Yoffe, An Explanation of the Indentation Size Effect in Ceramics, Phil. Mag. Lett., 1989, 59, p 281–288CrossRef
26.
Zurück zum Zitat P. Barick, D.C. Jana, and B.P. Saha, Load-Dependent Indentation Behaviour of β-SiAlON and α-Silicon Carbide, J. Adv. Ceram., 2013, 2, p 185–192CrossRef P. Barick, D.C. Jana, and B.P. Saha, Load-Dependent Indentation Behaviour of β-SiAlON and α-Silicon Carbide, J. Adv. Ceram., 2013, 2, p 185–192CrossRef
27.
Zurück zum Zitat B. Zhang, X.L. Zheng, H. Tokura, and M. Yoshikawa, Grinding Induced Damage in Ceramics, J. Mater. Process. Technol., 2003, 132, p 353–364CrossRef B. Zhang, X.L. Zheng, H. Tokura, and M. Yoshikawa, Grinding Induced Damage in Ceramics, J. Mater. Process. Technol., 2003, 132, p 353–364CrossRef
28.
Zurück zum Zitat J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Fundamental Machining Characteristics of Ultrasonic Assisted Internal Grinding of SiC Ceramics, Mater. Manuf. Process., 2014, 29, p 557–563CrossRef J. Cao, Y. Wu, D. Lu, M. Fujimoto, and M. Nomura, Fundamental Machining Characteristics of Ultrasonic Assisted Internal Grinding of SiC Ceramics, Mater. Manuf. Process., 2014, 29, p 557–563CrossRef
29.
Zurück zum Zitat B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?, Ceram. Inter., 2009, 35, p 237–246CrossRef B. Basu, D. Tiwari, D. Kundu, and R. Prasad, Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?, Ceram. Inter., 2009, 35, p 237–246CrossRef
30.
Zurück zum Zitat S. Jihong and J. Dongliang, Hot Iso-static Pressing of Presintered Silicon Carbide Ceramics, J. Eur. Ceram. Soc., 1991, 7, p 243–247CrossRef S. Jihong and J. Dongliang, Hot Iso-static Pressing of Presintered Silicon Carbide Ceramics, J. Eur. Ceram. Soc., 1991, 7, p 243–247CrossRef
Metadaten
Titel
Effect of Sintering Temperature on Density and Mechanical Properties of Solid-State Sintered Silicon Carbide Ceramics and Evaluation of Failure Origin
verfasst von
Dulal Chandra Jana
Prasenjit Barick
Bhaskar Prasad Saha
Publikationsdatum
15.05.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3397-4

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Engineering and Performance 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.