Skip to main content
Erschienen in: Journal of Electronic Materials 4/2024

17.01.2024 | Original Research Article

Effect of Surface Roughness on the Magnetism, Nano-indentation, Surface Energy, and Electrical Properties of Co60Fe20Dy20 Films on Si (100) Substrate

verfasst von: Wen-Jen Liu, Yung-Huang Chang, Chia-Chin Chiang, Yuan-Tsung Chen, Chih-Chien Lin, Pei-Ling Chen, Shih-Hung Lin

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we focused on depositing a target material, cobalt-iron-dysprosium (Co60Fe20Dy20), onto silicon (Si) (100) substrates with thickness varying from 10 nm to 50 nm through a direct-current (DC) magnetron sputtering technique. The subsequent step involved subjecting the samples to an hour-long annealing process in a vacuum annealing furnace at temperatures of 100°C, 200°C, and 300°C. To assess the elemental composition of the CoFeDy films, energy-dispersive X-ray spectroscopy (EDS) was employed. An observed trend indicated an increase in low-frequency alternating-current magnetic susceptibility (χac) with the increasing thickness. Remarkably, the CoFeDy films exhibited their peak χac following annealing at 300°C, with an optimal resonance frequency of 50 Hz. After annealing at 300°C, the CoFeDy film’s surface energy peaked at 50 nm. The magnetic, electrical, and adhesive properties of the CoFeDy films were notably influenced by surface roughness at different annealing temperatures. Atomic force microscopy (AFM) analysis revealed a gradual reduction in film roughness post-annealing, corresponding to smoother surfaces indicative of a weaker domain wall pinning effect, heightened carrier conductivity, and increased liquid spreading. Collectively, these outcomes contributed to diminished χac, reduced electrical resistance, and enhanced adhesion.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
34.
Zurück zum Zitat S.Y. Yang, J.J. Chien, W.C. Wang, C.Y. Yu, N.S. Hing, H.E. Hong, C.Y. Hong, H.C. Yang, C.F. Chang, and H.Y. Lin, Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 323, 681 (2011). https://doi.org/10.1016/j.jmmm.2010.10.011.ADSCrossRef S.Y. Yang, J.J. Chien, W.C. Wang, C.Y. Yu, N.S. Hing, H.E. Hong, C.Y. Hong, H.C. Yang, C.F. Chang, and H.Y. Lin, Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 323, 681 (2011). https://​doi.​org/​10.​1016/​j.​jmmm.​2010.​10.​011.ADSCrossRef
Metadaten
Titel
Effect of Surface Roughness on the Magnetism, Nano-indentation, Surface Energy, and Electrical Properties of Co60Fe20Dy20 Films on Si (100) Substrate
verfasst von
Wen-Jen Liu
Yung-Huang Chang
Chia-Chin Chiang
Yuan-Tsung Chen
Chih-Chien Lin
Pei-Ling Chen
Shih-Hung Lin
Publikationsdatum
17.01.2024
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2024
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10904-x

Weitere Artikel der Ausgabe 4/2024

Journal of Electronic Materials 4/2024 Zur Ausgabe

Neuer Inhalt