Skip to main content
Erschienen in: Surface Engineering and Applied Electrochemistry 2/2023

01.04.2023

Effect of the Structure of Passive Oxide Films and Surface Temperature on the Rate of Anodic Dissolution of Chromium–Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 1. Anodic Dissolution of Chromium–Nickel Steel in a Nitrate Solution

verfasst von: A. I. Dikusar, E. V. Likrizon

Erschienen in: Surface Engineering and Applied Electrochemistry | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The anodic dissolution of type Kh18N10 (Cr18Ni10) chromium–nickel steel was performed in a nitrate solution (conductivity of 0.15 S/cm) under pulsed current conditions using pulse durations of 20–100 µs, current densities of 0.01–100 A/cm2, and relative pulse durations of 10 to 1 (duty cycle from 10 to 100% (direct current), respectively). Different hydrodynamic conditions were implemented, and the surface temperature was measured. The results obtained are in line with the hypothesis that the process is mediated by the formation of a semiconducting anodic oxide film with point defects that can exhibit different types of conduction. The film is described within point defect model II, and the rate of its electrochemical formation is balanced under steady-state conditions by the rate of its chemical dissolution, which is why the mass decrease per unit charge reaches a limiting value of 0.16–0.18 mg/C (under the pulsed conditions), which corresponds to a current efficiency close to 100% (assuming the highest oxidation state for alloying components of the steel in solution). In going from pulsed current to direct current conditions, the thermokinetic instability of the film is observed, i.e., it forms and then undergoes breakdown due to thermal explosion. Under such circumstances, the current yield of anodic dissolution may not only reach 100%, assuming the lowest degree of oxidation of the alloying components (thermal activation), but exceeds this value as a result of chemical interaction between the film-free surface and the electrolyte.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat McGeough, J.A., Principles of Electrochemical Machining, London: Chapmann and Hall, 1974. McGeough, J.A., Principles of Electrochemical Machining, London: Chapmann and Hall, 1974.
2.
Zurück zum Zitat Davydov, A.D. and Kozak, E., Vysokoskorostnoe elektrokhimicheskoe formoobrazovanie (High-Rate Electrochemical Shaping), Moscow: Nauka, 1990. Davydov, A.D. and Kozak, E., Vysokoskorostnoe elektrokhimicheskoe formoobrazovanie (High-Rate Electrochemical Shaping), Moscow: Nauka, 1990.
3.
Zurück zum Zitat Davydov, A.D. and Volgin, V.M., Electrochemical machining, Encyclopedia of Electrochemistry, Bard. A.J. and Stramann, M., Eds., vol. 5: Electrochemical Engineering, Macdonald, D.D. and Shmuki, P., Eds., Weinhein: Wiley, 2007. Davydov, A.D. and Volgin, V.M., Electrochemical machining, Encyclopedia of Electrochemistry, Bard. A.J. and Stramann, M., Eds., vol. 5: Electrochemical Engineering, Macdonald, D.D. and Shmuki, P., Eds., Weinhein: Wiley, 2007.
4.
Zurück zum Zitat McGeough, J.A., Micromachining of Engineering Materials, New York: Marcel Dekker, 2002. McGeough, J.A., Micromachining of Engineering Materials, New York: Marcel Dekker, 2002.
5.
Zurück zum Zitat Davydov, A.D., Volgin, V.M., and Lubimov, V.V., Electrochemical machining of metals. Fundamentals of electrochemical shaping, Russ. J. Electrochem., 2004, vol. 40, p. 1230.CrossRef Davydov, A.D., Volgin, V.M., and Lubimov, V.V., Electrochemical machining of metals. Fundamentals of electrochemical shaping, Russ. J. Electrochem., 2004, vol. 40, p. 1230.CrossRef
6.
Zurück zum Zitat Spieser, A. and Ivanov, A., Recent developments and research challenges of electrochemical micromachining (µECM), Int. J. Adv. Manuf. Technol., 2013, vol. 69, nos. 1–4, p. 563.CrossRef Spieser, A. and Ivanov, A., Recent developments and research challenges of electrochemical micromachining (µECM), Int. J. Adv. Manuf. Technol., 2013, vol. 69, nos. 1–4, p. 563.CrossRef
7.
Zurück zum Zitat Mirzoev, R.A. and Davydov, A.D., Anodnye protsessy elektrokhimicheskoi i khimicheskoi obrabotki metallov (Anode Processes of Electrochemical and Chemical Processing of Metals), St. Petersburg: Izd. Politekh. Univ., 2013. Mirzoev, R.A. and Davydov, A.D., Anodnye protsessy elektrokhimicheskoi i khimicheskoi obrabotki metallov (Anode Processes of Electrochemical and Chemical Processing of Metals), St. Petersburg: Izd. Politekh. Univ., 2013.
8.
Zurück zum Zitat Davydov, A.D. and Volgin, V.M., Electrochemical local maskless micro/nanoscale deposition, dissolution and oxidation of metals and semiconductors, Russ. J. Electrochem., 2020, vol. 56, no. 1, p. 52.CrossRef Davydov, A.D. and Volgin, V.M., Electrochemical local maskless micro/nanoscale deposition, dissolution and oxidation of metals and semiconductors, Russ. J. Electrochem., 2020, vol. 56, no. 1, p. 52.CrossRef
9.
Zurück zum Zitat Rajucar, K.P., Kozak, E., Wei, B., and McGeough, J.A., Study of electrochemical machining characteristics, CIRP Annals, 1993, vol. 42, no. 1, p. 231.CrossRef Rajucar, K.P., Kozak, E., Wei, B., and McGeough, J.A., Study of electrochemical machining characteristics, CIRP Annals, 1993, vol. 42, no. 1, p. 231.CrossRef
10.
Zurück zum Zitat Rybalko, A.V. and Dikusar, A.I., Electrochemical machining with microsecond pulses, Russ. J. Electrochem., 1994, vol. 30, no. 4, p. 442. Rybalko, A.V. and Dikusar, A.I., Electrochemical machining with microsecond pulses, Russ. J. Electrochem., 1994, vol. 30, no. 4, p. 442.
11.
Zurück zum Zitat Rajucar, K.P., Wei, B., Kozak, J., and McGeough, J.A., Modelling and monitoring interelectrode gap in pulse electrochemical machining, CIRP Annals, 1995, vol. 44, no. 1, p. 177.CrossRef Rajucar, K.P., Wei, B., Kozak, J., and McGeough, J.A., Modelling and monitoring interelectrode gap in pulse electrochemical machining, CIRP Annals, 1995, vol. 44, no. 1, p. 177.CrossRef
12.
Zurück zum Zitat Kozak, J., Rajucar, K.P., and Makkar, Y.J., Study of pulse electrochemical micromachining, J. Manuf. Process, 2004, vol. 6, no. 1, p. 7.CrossRef Kozak, J., Rajucar, K.P., and Makkar, Y.J., Study of pulse electrochemical micromachining, J. Manuf. Process, 2004, vol. 6, no. 1, p. 7.CrossRef
13.
Zurück zum Zitat Idrisov, T.R., Zaitsev, A.N., and Zhitnikov, V.P., Estimation of the process localization of the electrochemical machining of bipolar current, J. Mater. Process Technol., 2004, vol. 149, nos. 1–3, p. 479.CrossRef Idrisov, T.R., Zaitsev, A.N., and Zhitnikov, V.P., Estimation of the process localization of the electrochemical machining of bipolar current, J. Mater. Process Technol., 2004, vol. 149, nos. 1–3, p. 479.CrossRef
14.
Zurück zum Zitat Zhitnikov, V.P., Zaitsev, A.N., Impul’snaya elektrokhimicheskaya razmernaya obrabotka (Pulse Electrochemical Dimensional Processing), Moscow: Mashinostroenie, 2008. Zhitnikov, V.P., Zaitsev, A.N., Impul’snaya elektrokhimicheskaya razmernaya obrabotka (Pulse Electrochemical Dimensional Processing), Moscow: Mashinostroenie, 2008.
15.
Zurück zum Zitat Zhitnikov, V.P., Sherihalina, N.M., and Zaripov, A.A., Modeling of precision steady-state and non-steady-state electrochemical machining by wire electrode-tool, J. Mater. Proc. Technol., 2016, vol. 235, p. 49.CrossRef Zhitnikov, V.P., Sherihalina, N.M., and Zaripov, A.A., Modeling of precision steady-state and non-steady-state electrochemical machining by wire electrode-tool, J. Mater. Proc. Technol., 2016, vol. 235, p. 49.CrossRef
16.
Zurück zum Zitat Lubimov, V.V., Volgin, V.M., and Gnidina, I.V., The choice of voltage pulse durations during processing by nano- and microsecond pulses, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 5, p. 547. Lubimov, V.V., Volgin, V.M., and Gnidina, I.V., The choice of voltage pulse durations during processing by nano- and microsecond pulses, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 5, p. 547.
17.
Zurück zum Zitat Silkin, S.A., Aksenov, E.N., Likrizon, E.A., Petrenko, V.I., et al., Improving spatial confinement of anodic dissolution of heat-resistant chromium–nickel alloys during pulsed electrochemical machining, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 493.CrossRef Silkin, S.A., Aksenov, E.N., Likrizon, E.A., Petrenko, V.I., et al., Improving spatial confinement of anodic dissolution of heat-resistant chromium–nickel alloys during pulsed electrochemical machining, Surf. Eng. Appl. Electrochem., 2019, vol. 55, p. 493.CrossRef
18.
Zurück zum Zitat Schuster, R., Kirchmar, V., Allonque, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 90.CrossRef Schuster, R., Kirchmar, V., Allonque, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 90.CrossRef
19.
Zurück zum Zitat Koch, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.CrossRef Koch, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses, Electrochim. Acta, 2003, vol. 48, p. 3213.CrossRef
20.
Zurück zum Zitat Dikusar, A.I. and Silkin, S.A., Formation and breakdown of oxide films in high-rate anodic dissolution of chromium–nickel steels in electrolytes for electrochemical machining, Surf. Eng. Appl. Electrochem., 2022, vol. 58, p. 313. Dikusar, A.I. and Silkin, S.A., Formation and breakdown of oxide films in high-rate anodic dissolution of chromium–nickel steels in electrolytes for electrochemical machining, Surf. Eng. Appl. Electrochem., 2022, vol. 58, p. 313.
21.
Zurück zum Zitat Dikusar, A.I., Likrizon, E., and Dikusar, G.K., High-rate pulse-galvanostatic anodic dissolution of nickel–chromium steels in electrolytes for their electrochemical machining, Surf. Eng. Appl. Electrochem., 2021, vol. 57, no. 1, p. 10.CrossRef Dikusar, A.I., Likrizon, E., and Dikusar, G.K., High-rate pulse-galvanostatic anodic dissolution of nickel–chromium steels in electrolytes for their electrochemical machining, Surf. Eng. Appl. Electrochem., 2021, vol. 57, no. 1, p. 10.CrossRef
22.
Zurück zum Zitat Nevskii, O.I., Volkov, V.I., Rumyantsev, E.M., and Belyanin, M.V., Anodic dissolution of copper in chloride and nitrate solution in galvanostatic mode, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, vol. 25, no. 2, p. 203. Nevskii, O.I., Volkov, V.I., Rumyantsev, E.M., and Belyanin, M.V., Anodic dissolution of copper in chloride and nitrate solution in galvanostatic mode, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1982, vol. 25, no. 2, p. 203.
23.
Zurück zum Zitat Rumyantsev, E.M., Nevskii, O.I., Volkov, V.I., and Grishina, E.P., Study of localization of the process of anodic dissolution of titanium alloy TS5 in various electrolytes, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1983, vol. 26, no. 2, p. 219. Rumyantsev, E.M., Nevskii, O.I., Volkov, V.I., and Grishina, E.P., Study of localization of the process of anodic dissolution of titanium alloy TS5 in various electrolytes, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1983, vol. 26, no. 2, p. 219.
24.
Zurück zum Zitat Lilin, S.A., Rumyantsev, E.M., Oshe, E.K., et al., Oxidation of the surface of iron and its alloys during high-speed anodic dissolution, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1984, vol. 27, no. 12, p. 1452. Lilin, S.A., Rumyantsev, E.M., Oshe, E.K., et al., Oxidation of the surface of iron and its alloys during high-speed anodic dissolution, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1984, vol. 27, no. 12, p. 1452.
25.
Zurück zum Zitat Rumyantsev, E.M. and Lilin, S.A., ECP in non-aqueous environments as an effective way to process metals, Zh. Vsesoyuz. Khim. O-va. im. Mendeleeva, 1984, vol. 29, no. 5, p. 560. Rumyantsev, E.M. and Lilin, S.A., ECP in non-aqueous environments as an effective way to process metals, Zh. Vsesoyuz. Khim. O-va. im. Mendeleeva, 1984, vol. 29, no. 5, p. 560.
26.
Zurück zum Zitat Lilin, S.A., Rumyantsev, E.M., Krestov, G.A., et al., The role of surface films in the anodic dissolution of metals, Dokl. Akad. Nauk SSSR, 1986, vol. 289. no. 2, p. 409. Lilin, S.A., Rumyantsev, E.M., Krestov, G.A., et al., The role of surface films in the anodic dissolution of metals, Dokl. Akad. Nauk SSSR, 1986, vol. 289. no. 2, p. 409.
27.
Zurück zum Zitat Macdonald, D.D., On existence of our metal-based civilization. I. Phase-space analysis, J. Electrochem. Soc., 2006, vol. 153, no. 7, p. B213.CrossRef Macdonald, D.D., On existence of our metal-based civilization. I. Phase-space analysis, J. Electrochem. Soc., 2006, vol. 153, no. 7, p. B213.CrossRef
28.
Zurück zum Zitat Macdonald, D.D., The history of the point defect model for passive state: A brief review of film growth aspects, Electrochim. Acta, 2011, vol. 56, p. 1761.CrossRef Macdonald, D.D., The history of the point defect model for passive state: A brief review of film growth aspects, Electrochim. Acta, 2011, vol. 56, p. 1761.CrossRef
29.
Zurück zum Zitat Macdonald, D.D. and Engelgardt, G.R., The point defect model for bi-layer passive films, ECS Trans., 2010, vol. 28, no. 24, p. 123.CrossRef Macdonald, D.D. and Engelgardt, G.R., The point defect model for bi-layer passive films, ECS Trans., 2010, vol. 28, no. 24, p. 123.CrossRef
30.
Zurück zum Zitat Wagner, C., Contribution to the theory of electropolishing, J. Electrochem. Soc., 1954, vol. 101, no. 2, p. 225.CrossRef Wagner, C., Contribution to the theory of electropolishing, J. Electrochem. Soc., 1954, vol. 101, no. 2, p. 225.CrossRef
31.
Zurück zum Zitat Engelgardt, G.R. and Dikusar, A.I., Thermokinetic instability of electrode processes. Part I. Theoretical analysis, J. Electroanal. Chem., 1986, vol. 207, nos. 1–2, p. 1.CrossRef Engelgardt, G.R. and Dikusar, A.I., Thermokinetic instability of electrode processes. Part I. Theoretical analysis, J. Electroanal. Chem., 1986, vol. 207, nos. 1–2, p. 1.CrossRef
32.
Zurück zum Zitat Dikusar, A.I., Molin, A.N., Petrenko, V.I., et al., Thermokinetic instability of electrode processes. Part II. Transpassive dissolution of copper in nitrate solutions, J. Electroanal. Chem., 1986, vol. 207, nos. 1–2, p. 9.CrossRef Dikusar, A.I., Molin, A.N., Petrenko, V.I., et al., Thermokinetic instability of electrode processes. Part II. Transpassive dissolution of copper in nitrate solutions, J. Electroanal. Chem., 1986, vol. 207, nos. 1–2, p. 9.CrossRef
33.
Zurück zum Zitat Dikusar, A.I., Engel’gardt, G.R., and Molin, A.N., Termokineticheskie yavleniya pri vysoko-skorostnykh elektrodnykh protsessakh (Thermokinetic Phenomena in High-Speed Electrode Processes), Chisinau: Shtiintsa, 1989, p. 142. Dikusar, A.I., Engel’gardt, G.R., and Molin, A.N., Termokineticheskie yavleniya pri vysoko-skorostnykh elektrodnykh protsessakh (Thermokinetic Phenomena in High-Speed Electrode Processes), Chisinau: Shtiintsa, 1989, p. 142.
34.
Zurück zum Zitat Molin, A.N., Prin, G.N., Fishtik, I.F., and Engelgardt, G.R., Characteristics of surface heat liberation with anodic dissolution of chromium–nickel steels and alloys in chloride solutions, Sov. Surf. Eng. Appl. Electrochem., 1986, no. 3, p. 74. Molin, A.N., Prin, G.N., Fishtik, I.F., and Engelgardt, G.R., Characteristics of surface heat liberation with anodic dissolution of chromium–nickel steels and alloys in chloride solutions, Sov. Surf. Eng. Appl. Electrochem., 1986, no. 3, p. 74.
35.
Zurück zum Zitat Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977.
36.
Zurück zum Zitat Dorfman, L.A., Gidrodinamicheskoe soprotivlenie i teplootdacha vrashchayushchikhsya tel (Hydrodynamic Resistance and Heat Transfer of Rotating Bodies), Moscow: Fizmatgiz, 1960. Dorfman, L.A., Gidrodinamicheskoe soprotivlenie i teplootdacha vrashchayushchikhsya tel (Hydrodynamic Resistance and Heat Transfer of Rotating Bodies), Moscow: Fizmatgiz, 1960.
Metadaten
Titel
Effect of the Structure of Passive Oxide Films and Surface Temperature on the Rate of Anodic Dissolution of Chromium–Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 1. Anodic Dissolution of Chromium–Nickel Steel in a Nitrate Solution
verfasst von
A. I. Dikusar
E. V. Likrizon
Publikationsdatum
01.04.2023
Verlag
Pleiades Publishing
Erschienen in
Surface Engineering and Applied Electrochemistry / Ausgabe 2/2023
Print ISSN: 1068-3755
Elektronische ISSN: 1934-8002
DOI
https://doi.org/10.3103/S1068375523020047

Weitere Artikel der Ausgabe 2/2023

Surface Engineering and Applied Electrochemistry 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.