Skip to main content
Erschienen in: International Journal of Steel Structures 2/2021

16.03.2021

Effect of the Uncorrelated Profile of Rails on Train-Track-Ground Induced Vibrations

Erschienen in: International Journal of Steel Structures | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In predicting the track-ground vibrations induced by moving trains, it is generally assumed that the irregularities of two rails of a track are identical and fully correlated. This assumption leads to identical contact forces at the contact point of wheels and rails. In the present paper, the uncorrelated profile of the two rails is considered to investigate their influence on the train-track-ground vibrations. For this purpose, a three-dimensional (3D) finite element model capable of simulating interactions between a 3D train and track by using a nonlinear Hertz contact method is developed. Nonlinear Hertz contact is represented by the tensionless stiffness between the wheels and rails. The rails are modeled as 3D Euler–Bernoulli beam elements. Solid brick elements represent the model components, such as the track (other than rail) and ground. A detailed description of an iterative numerical algorithm is presented to establish the integrations of the train and track system. This iterative numerical algorithm can calculate the responses and forces at the interaction point between each wheel and rail to incorporate the uncorrelated profile of two rails, instead of only considering the interaction at the centroid of the wheelset axle and the center of the track. A comparative study is conducted by considering various train speeds and three different track cases. The results show that an increase in train speed causes an increase in ground vibration in the case of uncorrelated profiles of two rails of a track. Moreover, the effects of correlated and uncorrelated profiles of two rails of a track are investigated in terms of the train-track-ground responses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu-Farsakh, M., Ardah, A., & Voyiadjis, G. (2018). 3D Finite element analysis of the geosynthetic reinforced soil-integrated bridge system (GRS-IBS) under different loading conditions. Transportation Geotechnics, 15, 70–83.CrossRef Abu-Farsakh, M., Ardah, A., & Voyiadjis, G. (2018). 3D Finite element analysis of the geosynthetic reinforced soil-integrated bridge system (GRS-IBS) under different loading conditions. Transportation Geotechnics, 15, 70–83.CrossRef
Zurück zum Zitat Antolín, P., Zhang, N., Goicolea, J. M., Xia, H., Astiz, M. Á., & Oliva, J. (2013). Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. Journal of Sound and Vibration, 332(5), 1231–1251.CrossRef Antolín, P., Zhang, N., Goicolea, J. M., Xia, H., Astiz, M. Á., & Oliva, J. (2013). Consideration of nonlinear wheel–rail contact forces for dynamic vehicle–bridge interaction in high-speed railways. Journal of Sound and Vibration, 332(5), 1231–1251.CrossRef
Zurück zum Zitat Auersch, L., & Said, S. (2017). Track-soil dynamics–calculation and measurement of damaged and repaired slab tracks. Transportation Geotechnics, 12, 1–14.CrossRef Auersch, L., & Said, S. (2017). Track-soil dynamics–calculation and measurement of damaged and repaired slab tracks. Transportation Geotechnics, 12, 1–14.CrossRef
Zurück zum Zitat Bachmann, H., Pretlove, A., & Rainer, H. (1995). Human response to vibrations vibration problems in structures practical guidelines. Basel: Birkhäuser.CrossRef Bachmann, H., Pretlove, A., & Rainer, H. (1995). Human response to vibrations vibration problems in structures practical guidelines. Basel: Birkhäuser.CrossRef
Zurück zum Zitat Cao, S., Yang, R., Shi, L., Li, J., & Liu, X. (2019). Distribution characteristic of hydrodynamic pressure in the ballastless track crack under the train load. KSCE Journal of Civil Engineering, 23(2), 576–586.CrossRef Cao, S., Yang, R., Shi, L., Li, J., & Liu, X. (2019). Distribution characteristic of hydrodynamic pressure in the ballastless track crack under the train load. KSCE Journal of Civil Engineering, 23(2), 576–586.CrossRef
Zurück zum Zitat Celebi, E., & Schmid, G. (2005). Investigation of ground vibrations induced by moving loads. Engineering Structures, 27(14), 1981–1998.CrossRef Celebi, E., & Schmid, G. (2005). Investigation of ground vibrations induced by moving loads. Engineering Structures, 27(14), 1981–1998.CrossRef
Zurück zum Zitat Chopra, A. K. (2012). Dynamics of structures. Upper Saddle River: Pearson Education. Chopra, A. K. (2012). Dynamics of structures. Upper Saddle River: Pearson Education.
Zurück zum Zitat Connolly, D., Giannopoulos, A., & Forde, M. C. (2013). Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dynamics and Earthquake Engineering, 46, 13–19.CrossRef Connolly, D., Giannopoulos, A., & Forde, M. C. (2013). Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dynamics and Earthquake Engineering, 46, 13–19.CrossRef
Zurück zum Zitat El Kacimi, A., Woodward, P. K., Laghrouche, O., & Medero, G. (2013). Time domain 3D finite element modelling of train-induced vibration at high speed. Computers and Structures, 118, 66–73.CrossRef El Kacimi, A., Woodward, P. K., Laghrouche, O., & Medero, G. (2013). Time domain 3D finite element modelling of train-induced vibration at high speed. Computers and Structures, 118, 66–73.CrossRef
Zurück zum Zitat Galvín, P., François, S., Schevenels, M., Bongini, E., Degrande, G., & Lombaert, G. (2010). A 2.5D coupled FE-BE model for the prediction of railway induced vibrations. Soil Dynamics and Earthquake Engineering, 30(12), 1500–1512.CrossRef Galvín, P., François, S., Schevenels, M., Bongini, E., Degrande, G., & Lombaert, G. (2010). A 2.5D coupled FE-BE model for the prediction of railway induced vibrations. Soil Dynamics and Earthquake Engineering, 30(12), 1500–1512.CrossRef
Zurück zum Zitat Hussein, M. F. M., & Hunt, H. E. M. (2009). A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel. Journal of Sound and Vibration, 321(1), 363–374.CrossRef Hussein, M. F. M., & Hunt, H. E. M. (2009). A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel. Journal of Sound and Vibration, 321(1), 363–374.CrossRef
Zurück zum Zitat Kouroussis, G., Connolly, D. P., & Verlinden, O. (2014). Railway-induced ground vibrations–a review of vehicle effects. International Journal of Rail Transportation, 2(2), 69–110.CrossRef Kouroussis, G., Connolly, D. P., & Verlinden, O. (2014). Railway-induced ground vibrations–a review of vehicle effects. International Journal of Rail Transportation, 2(2), 69–110.CrossRef
Zurück zum Zitat Kouroussis, G., Verlinden, O., & Conti, C. (2012). A two-step time simulation of ground vibrations induced by the railway traffic. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(2), 454–472. Kouroussis, G., Verlinden, O., & Conti, C. (2012). A two-step time simulation of ground vibrations induced by the railway traffic. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(2), 454–472.
Zurück zum Zitat Krylov, V. V. (1995). Generation of ground vibrations by superfast trains. Applied Acoustics, 44(2), 149–164.CrossRef Krylov, V. V. (1995). Generation of ground vibrations by superfast trains. Applied Acoustics, 44(2), 149–164.CrossRef
Zurück zum Zitat Lei, X., & Noda, N.-A. (2002). Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile. Journal of Sound and Vibration, 258(1), 147–165.CrossRef Lei, X., & Noda, N.-A. (2002). Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile. Journal of Sound and Vibration, 258(1), 147–165.CrossRef
Zurück zum Zitat Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the engineering mechanics division, 95(4), 859–878.CrossRef Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the engineering mechanics division, 95(4), 859–878.CrossRef
Zurück zum Zitat Mezher, S. B., Connolly, D. P., Woodward, P. K., Laghrouche, O., Pombo, J., & Costa, P. A. (2016). Railway critical velocity–analytical prediction and analysis. Transportation Geotechnics, 6, 84–96.CrossRef Mezher, S. B., Connolly, D. P., Woodward, P. K., Laghrouche, O., Pombo, J., & Costa, P. A. (2016). Railway critical velocity–analytical prediction and analysis. Transportation Geotechnics, 6, 84–96.CrossRef
Zurück zum Zitat Mu, D., & Choi, D.-H. (2014). Dynamic responses of a continuous beam railway bridge under moving high speed train with random track irregularity. International Journal of Steel Structures, 14(4), 797–810.CrossRef Mu, D., & Choi, D.-H. (2014). Dynamic responses of a continuous beam railway bridge under moving high speed train with random track irregularity. International Journal of Steel Structures, 14(4), 797–810.CrossRef
Zurück zum Zitat Mu, D., Gwon, S.-G., & Choi, D.-H. (2016). Dynamic responses of a cable-stayed bridge under a high speed train with random track irregularities and a vertical seismic load. International Journal of Steel Structures, 16(4), 1339–1354.CrossRef Mu, D., Gwon, S.-G., & Choi, D.-H. (2016). Dynamic responses of a cable-stayed bridge under a high speed train with random track irregularities and a vertical seismic load. International Journal of Steel Structures, 16(4), 1339–1354.CrossRef
Zurück zum Zitat Nguyen, V. D., Kim, K. D., & Warnitchai, P. (2009). Dynamic analysis of three-dimensional bridge–high-speed train interactions using a wheel–rail contact model. Engineering Structures, 31(12), 3090–3106.CrossRef Nguyen, V. D., Kim, K. D., & Warnitchai, P. (2009). Dynamic analysis of three-dimensional bridge–high-speed train interactions using a wheel–rail contact model. Engineering Structures, 31(12), 3090–3106.CrossRef
Zurück zum Zitat Phillips, C., & Hashash, Y. M. (2009). Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158.CrossRef Phillips, C., & Hashash, Y. M. (2009). Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158.CrossRef
Zurück zum Zitat Ranjan, G., & Rao, A. (2007). Basic and applied soil mechanics. New Delhi: New Age International. Ranjan, G., & Rao, A. (2007). Basic and applied soil mechanics. New Delhi: New Age International.
Zurück zum Zitat Real, T., Zamorano, C., Hernández, C., García, J., & Real, J. (2016). Static and dynamic behavior of transitions between different railway track typologies. KSCE Journal of Civil Engineering, 20(4), 1356–1364.CrossRef Real, T., Zamorano, C., Hernández, C., García, J., & Real, J. (2016). Static and dynamic behavior of transitions between different railway track typologies. KSCE Journal of Civil Engineering, 20(4), 1356–1364.CrossRef
Zurück zum Zitat Shabana, A. A., Zaazaa, K. E., & Sugiyama, H. (2007). Railroad vehicle dynamics: A computational approach. London: CRC Press.CrossRef Shabana, A. A., Zaazaa, K. E., & Sugiyama, H. (2007). Railroad vehicle dynamics: A computational approach. London: CRC Press.CrossRef
Zurück zum Zitat Shahbaznia, M., Mirzaee, A., & Dehkordi, M. R. (2020). A new model updating procedure for reliability-based damage and load identification of railway bridges. KSCE Journal of Civil Engineering, 24(3), 890–901.CrossRef Shahbaznia, M., Mirzaee, A., & Dehkordi, M. R. (2020). A new model updating procedure for reliability-based damage and load identification of railway bridges. KSCE Journal of Civil Engineering, 24(3), 890–901.CrossRef
Zurück zum Zitat Sheng, X., Jones, C., & Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5), 937–965.CrossRef Sheng, X., Jones, C., & Thompson, D. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3–5), 937–965.CrossRef
Zurück zum Zitat Thompson, D. (2008). Railway noise and vibration: mechanisms, modelling and means of control. Amsterdam: Elsevier. Thompson, D. (2008). Railway noise and vibration: mechanisms, modelling and means of control. Amsterdam: Elsevier.
Zurück zum Zitat Xia, H., Zhang, N., & Guo, W. (2018). Dynamic interaction of train-bridge systems in high-speed railways. Beijing: Beijing Jiaotong University Press and Springer GmbH Germany.CrossRef Xia, H., Zhang, N., & Guo, W. (2018). Dynamic interaction of train-bridge systems in high-speed railways. Beijing: Beijing Jiaotong University Press and Springer GmbH Germany.CrossRef
Zurück zum Zitat Zhai, W., Han, Z., Chen, Z., Ling, L., & Zhu, S. (2019). Train–track–bridge dynamic interaction: A state-of-the-art review. Vehicle System Dynamics, 57(7), 984–1027.CrossRef Zhai, W., Han, Z., Chen, Z., Ling, L., & Zhu, S. (2019). Train–track–bridge dynamic interaction: A state-of-the-art review. Vehicle System Dynamics, 57(7), 984–1027.CrossRef
Metadaten
Titel
Effect of the Uncorrelated Profile of Rails on Train-Track-Ground Induced Vibrations
Publikationsdatum
16.03.2021
Erschienen in
International Journal of Steel Structures / Ausgabe 2/2021
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-020-00452-z

Weitere Artikel der Ausgabe 2/2021

International Journal of Steel Structures 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.