Skip to main content

2020 | OriginalPaper | Buchkapitel

58. Effect of the Variation of the Electrode Geometrical Configuration on the Electric Wind Velocity Produced by an Electric Corona Discharge

verfasst von : M. Bouadi, K. Yanallah, M. R. Bouazza, F. Pontiga

Erschienen in: ICREEC 2019

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we determine precisely the electric wind velocity, produced by a direct current (DC) corona discharge in air, using three electrode geometrical configurations: ‘wire-to-plate’ (a), ‘two wires-to-plate’ (b) and ‘three wires-to-plate’ (c). Each electrode wire is subjected to the same high positive voltage while the plate is grounded. The electric wind velocity is determined through a mathematical model based on the resolution of Navier-Stokes equation, in which a source term consisting in the electro-hydrodynamic (EHD) force, already established by our group in the form of a simplified analytical expression, is used. The results found allow to compare the profile of the electric wind produced by the corona discharge for the three electrode geometrical configurations ((a), (b) and (c)).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Béquin, K. Castor, J. Scholten, Electric wind characterisation in negative point-to-plane corona discharges in air. Eur. Phys. J. - Appl. Phys. 22, 41–49 (2003)CrossRef P. Béquin, K. Castor, J. Scholten, Electric wind characterisation in negative point-to-plane corona discharges in air. Eur. Phys. J. - Appl. Phys. 22, 41–49 (2003)CrossRef
2.
Zurück zum Zitat D.F. Colas, A. Ferret, D.Z. Pai, D.A. Lacoste, C.O. Laux, Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure. J. Appl. Phys. 108, 103306 (2010)CrossRef D.F. Colas, A. Ferret, D.Z. Pai, D.A. Lacoste, C.O. Laux, Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure. J. Appl. Phys. 108, 103306 (2010)CrossRef
3.
Zurück zum Zitat C. Kim, D. Park, K.C. Noh, J. Hwang, Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration. J. Electrost. 68, 36–41 (2010)CrossRef C. Kim, D. Park, K.C. Noh, J. Hwang, Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration. J. Electrost. 68, 36–41 (2010)CrossRef
4.
Zurück zum Zitat E. Moreau, C. Louste, G. Touchard, Electric wind induced by sliding discharge in air at atmospheric pressure. J. Electrost. 66, 107–114 (2008)CrossRef E. Moreau, C. Louste, G. Touchard, Electric wind induced by sliding discharge in air at atmospheric pressure. J. Electrost. 66, 107–114 (2008)CrossRef
5.
Zurück zum Zitat M. Rickard, D. Dunn-Rankin, F. Weinberg, F. Carleton, Characterization of ionic wind velocity. J. Electrost. 63, 711–716 (2005)CrossRef M. Rickard, D. Dunn-Rankin, F. Weinberg, F. Carleton, Characterization of ionic wind velocity. J. Electrost. 63, 711–716 (2005)CrossRef
6.
Zurück zum Zitat J. Jolibois, N. Zouzou, E. Moreau, J.M. Tatibouët, Generation of surface DBD on rough dielectric: electrical properties, discharge-induced electric wind and generated chemical species. J. Electrost. 69, 522–528 (2011)CrossRef J. Jolibois, N. Zouzou, E. Moreau, J.M. Tatibouët, Generation of surface DBD on rough dielectric: electrical properties, discharge-induced electric wind and generated chemical species. J. Electrost. 69, 522–528 (2011)CrossRef
7.
Zurück zum Zitat M. Robinson, A history of the electric wind. Am. J. Phys. 30, 366–372 (1962)CrossRef M. Robinson, A history of the electric wind. Am. J. Phys. 30, 366–372 (1962)CrossRef
8.
Zurück zum Zitat B. Kim, S. Lee, Y.S. Lee, K.H. Kang, Ion wind generation and the application to cooling. J. Electrost. 70, 438–444 (2012)CrossRef B. Kim, S. Lee, Y.S. Lee, K.H. Kang, Ion wind generation and the application to cooling. J. Electrost. 70, 438–444 (2012)CrossRef
10.
Zurück zum Zitat L. Léger, E. Moreau, G. Artana, G. Touchard, Influence of a DC corona discharge on the airflow along an inclined flat plate. J. Electrost. 51–52, 300–306 (2001)CrossRef L. Léger, E. Moreau, G. Artana, G. Touchard, Influence of a DC corona discharge on the airflow along an inclined flat plate. J. Electrost. 51–52, 300–306 (2001)CrossRef
11.
Zurück zum Zitat E.D. Fylladitakis, M.P. Theodoridis, A.X. Moronis, Review on the history, research, and applications of electrohydrodynamics. IEEE Trans. Plasma Sci. 42, 358–375 (2014) E.D. Fylladitakis, M.P. Theodoridis, A.X. Moronis, Review on the history, research, and applications of electrohydrodynamics. IEEE Trans. Plasma Sci. 42, 358–375 (2014)
12.
Zurück zum Zitat E. Timmermann, F. Prehn, M. Schmidt, H. Höft, R. Brandenburg, M. Kettlitz, Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations. J. Phys. D: Appl. Phys. 51, 164003 (2018) E. Timmermann, F. Prehn, M. Schmidt, H. Höft, R. Brandenburg, M. Kettlitz, Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations. J. Phys. D: Appl. Phys. 51, 164003 (2018)
14.
Zurück zum Zitat M. Robinson, Movement of air in the electric wind of the corona discharge. Trans. Am. Inst. Electr. Eng. Part Commun. Electron. 80, 143–150 (1961) M. Robinson, Movement of air in the electric wind of the corona discharge. Trans. Am. Inst. Electr. Eng. Part Commun. Electron. 80, 143–150 (1961)
15.
Zurück zum Zitat D. Lacoste, D. Pai, C. Laux, Ion wind effects in a positive DC corona discharge in atmospheric pressure air, in 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004), p. 354 D. Lacoste, D. Pai, C. Laux, Ion wind effects in a positive DC corona discharge in atmospheric pressure air, in 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004), p. 354
16.
Zurück zum Zitat H. Kawamoto, H. Yasuda, S. Umezu, Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system. J. Electrostat. 64, 400–407 (2006) H. Kawamoto, H. Yasuda, S. Umezu, Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system. J. Electrostat. 64, 400–407 (2006)
17.
Zurück zum Zitat S. El-Khabiry, G.M. Colver, Drag reduction by dc corona discharge along an electrically conductive flat plate for small reynolds number flow. Phys. Fluids 9, 587–599 (1997)CrossRef S. El-Khabiry, G.M. Colver, Drag reduction by dc corona discharge along an electrically conductive flat plate for small reynolds number flow. Phys. Fluids 9, 587–599 (1997)CrossRef
18.
Zurück zum Zitat J.F. Loiseau, J. Batina, F. Noël, R. Peyrous, Hydrodynamical simulation of the electric wind generated by successive streamers in a point-to-plane reactor. J. Phys. Appl. Phys. 35, 1020 (2002)CrossRef J.F. Loiseau, J. Batina, F. Noël, R. Peyrous, Hydrodynamical simulation of the electric wind generated by successive streamers in a point-to-plane reactor. J. Phys. Appl. Phys. 35, 1020 (2002)CrossRef
19.
Zurück zum Zitat L. Zhao, K. Adamiak, Effects of EHD and external airflows on electric corona discharge in point-plane/mesh configurations. IEEE Trans. Ind. Appl. 45, 16–21 (2009)CrossRef L. Zhao, K. Adamiak, Effects of EHD and external airflows on electric corona discharge in point-plane/mesh configurations. IEEE Trans. Ind. Appl. 45, 16–21 (2009)CrossRef
20.
Zurück zum Zitat L. Zhao, K. Adamiak, Numerical simulation of the effect of EHD flow on corona discharge in compressed air. IEEE Trans. Ind. Appl. 49, 298–304 (2013)CrossRef L. Zhao, K. Adamiak, Numerical simulation of the effect of EHD flow on corona discharge in compressed air. IEEE Trans. Ind. Appl. 49, 298–304 (2013)CrossRef
21.
Zurück zum Zitat R.S. Islamov, An analytical model of the ionic wind in a regular ultracorona. J. Phys. Appl. Phys. 46, 375204 (2013)CrossRef R.S. Islamov, An analytical model of the ionic wind in a regular ultracorona. J. Phys. Appl. Phys. 46, 375204 (2013)CrossRef
22.
Zurück zum Zitat M. Molki, P. Damronglerd, Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts. Heat Transf. Eng. 27, 35–45 (2006)CrossRef M. Molki, P. Damronglerd, Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts. Heat Transf. Eng. 27, 35–45 (2006)CrossRef
23.
Zurück zum Zitat K. Yanallah, F. Pontiga, M.R. Bouazza, J.H. Chen, The effect of the electric wind on the spatial distribution of chemical species in the positive corona discharge. J. Phys. Appl. Phys. 50, 335203 (2017)CrossRef K. Yanallah, F. Pontiga, M.R. Bouazza, J.H. Chen, The effect of the electric wind on the spatial distribution of chemical species in the positive corona discharge. J. Phys. Appl. Phys. 50, 335203 (2017)CrossRef
24.
Zurück zum Zitat M.R. Bouazza, K. Yanallah, F. Pontiga, J.H. Chen, A simplified formulation of wire-plate corona discharge in air: application to the ion wind simulation. J. Electrost. 92, 54–65 (2018)CrossRef M.R. Bouazza, K. Yanallah, F. Pontiga, J.H. Chen, A simplified formulation of wire-plate corona discharge in air: application to the ion wind simulation. J. Electrost. 92, 54–65 (2018)CrossRef
25.
Zurück zum Zitat J.P. Boeuf, L.C. Pitchford, Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J. Appl. Phys. 97, 103307 (2005)CrossRef J.P. Boeuf, L.C. Pitchford, Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J. Appl. Phys. 97, 103307 (2005)CrossRef
26.
Zurück zum Zitat J. Chen, J.H. Davidson, Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions. Plasma Chem. Plasma Process. 22, 199–224 (2002)CrossRef J. Chen, J.H. Davidson, Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions. Plasma Chem. Plasma Process. 22, 199–224 (2002)CrossRef
27.
Zurück zum Zitat K. Yanallah, F. Pontiga, A. Fernández-Rueda, A. Castellanos, Experimental investigation and numerical modelling of positive corona discharge: ozone generation. J. Phys. Appl. Phys. 42, 065202 (2009)CrossRef K. Yanallah, F. Pontiga, A. Fernández-Rueda, A. Castellanos, Experimental investigation and numerical modelling of positive corona discharge: ozone generation. J. Phys. Appl. Phys. 42, 065202 (2009)CrossRef
28.
Zurück zum Zitat K. Yanallah, F. Pontiga, J.H. Chen, A semi-analytical study of positive corona discharge in wire–plane electrode configuration. J. Phys. Appl. Phys. 46, 345202 (2013)CrossRef K. Yanallah, F. Pontiga, J.H. Chen, A semi-analytical study of positive corona discharge in wire–plane electrode configuration. J. Phys. Appl. Phys. 46, 345202 (2013)CrossRef
29.
Zurück zum Zitat S. Ould Ahmedou, M. Havet, Effect of process parameters on the EHD airflow. J. Electrost. 67, 222–227 (2009)CrossRef S. Ould Ahmedou, M. Havet, Effect of process parameters on the EHD airflow. J. Electrost. 67, 222–227 (2009)CrossRef
30.
Zurück zum Zitat H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, London, 2007) H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, London, 2007)
31.
Zurück zum Zitat W. Deutsch, Über die dichteverteilung unipolarer ionenströme. Ann. Phys. 408, 588–612 (1933)CrossRef W. Deutsch, Über die dichteverteilung unipolarer ionenströme. Ann. Phys. 408, 588–612 (1933)CrossRef
32.
Zurück zum Zitat R.S. Sigmond, The unipolar corona space charge flow problem. J. Electrost. 18, 249–272 (1986)CrossRef R.S. Sigmond, The unipolar corona space charge flow problem. J. Electrost. 18, 249–272 (1986)CrossRef
Metadaten
Titel
Effect of the Variation of the Electrode Geometrical Configuration on the Electric Wind Velocity Produced by an Electric Corona Discharge
verfasst von
M. Bouadi
K. Yanallah
M. R. Bouazza
F. Pontiga
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5444-5_58